Quantification of milk adulterants (starch, H2O2, and NaClO) using colorimetric assays coupled to smartphone image analysis

被引:36
作者
Costa, Rayana A. [1 ]
Morais, Camilo L. M. [2 ]
Rosa, Thalles R. [1 ]
Filgueiras, Paulo R. [1 ]
Mendonca, Monike S. [3 ]
Pereira, Isabelly E. S. [3 ]
Vittorazzi, Bruno V. [4 ,5 ]
Lyra, Marisa B. [4 ,5 ]
Lima, Kassio M. G. [2 ]
Romao, Wanderson [1 ,3 ,4 ,5 ]
机构
[1] Univ Fed Espirito Santo, Dept Quim, Lab Petr & Quim Forense, BR-29075910 Vitoria, ES, Brazil
[2] Univ Cent Lancashire, Sch Pharm & Biomed Sci, Preston PR1 2HE, Lancs, England
[3] Inst Fed Espirito Santo, BR-29150410 Cariacica, ES, Brazil
[4] Inst Fed Espirito Santo, BR-29106010 Vila Velha, ES, Brazil
[5] Inst Nacl Ciencia & Tecnol Forense INCT Forense, Porto Alegre, RS, Brazil
关键词
Milk; Adulterants; RGB image; PLS; Smartphone; NEAR-INFRARED SPECTROSCOPY; HYDROGEN-PEROXIDE; DIGITAL IMAGES; COCAINE; SYSTEM; PHONE; TOOL;
D O I
10.1016/j.microc.2020.104968
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, a colorimetric method for the detection of milk adulterants using smartphone image analysis is reported. This is based on the reactions to detect hydrogen peroxide, sodium hypochlorite, and starch in milk, where a color variation is observed for each substance. The image analysis was performed by using lab-made apps (PhotoMetrix (R), and RedGIM (R)) based on partial least squares regression with the histograms of the redgreen-blue images. The image histograms are automatically calculated using the smartphone camera and processed within the app. The results have shown the capability of this method to predict the concentration of the three adulterants, demonstrating the potential of the use of digital images and smartphone applications associated with chemometric tools. This method presents a fast, low-cost, and portable way to quantify adulterants in Cow milk.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
Azad T., 2016, International Journal of Food Contamination, V3, DOI DOI 10.1186/S40550-016-0045-3
[2]  
Azda T., 2016, INT J FOOD CONTAM, V3, P327
[3]   CHARACTERIZATION OF STARCH AND ITS COMPONENTS .3. TECHNIQUE OF SEMI-MICRO, DIFFERENTIAL, POTENTIOMETRIC, IODINE TITRATION, AND FACTORS AFFECTING IT [J].
BANKS, W ;
GREENWOO.CT ;
MUIR, DD .
STARKE, 1971, 23 (04) :118-&
[4]  
Baumann L., 2019, AGUAS SUBTERRANEAS, V33
[5]   Rapid Determination of Ethanol in Sugarcane Spirit Using Partial Least Squares Regression Embedded in Smartphone [J].
Bock, Fernanda C. ;
Helfer, Gilson A. ;
da Costa, Adilson B. ;
Dessuy, Morgana B. ;
Ferrao, Marco F. .
FOOD ANALYTICAL METHODS, 2018, 11 (07) :1951-1957
[6]   Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk [J].
Borin, Alessandra ;
Ferrao, Marco Flores ;
Mello, Cesar ;
Maretto, Danilo Althmann ;
Poppi, Ronei Jesus .
ANALYTICA CHIMICA ACTA, 2006, 579 (01) :25-32
[7]  
Cadle BA, 2010, SUBST ABUS-RES TREAT, V4, P21
[8]   A peroxidase-tetrathiafulvalene biosensor based on self-assembled monolayer modified Au electrodes for the flow-injection determination of hydrogen peroxide [J].
Campuzano, S ;
Pedrero, M ;
Pingarrón, JA .
TALANTA, 2005, 66 (05) :1310-1319
[9]   Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk [J].
Correa da Silva, Livia Cavaletti ;
Tamanini, Ronaldo ;
Pereira, Juliana Ramos ;
Rios, Edson Antonio ;
Ribeiro Junior, Jose Carlos ;
Beloti, Vanerli .
CIENCIA RURAL, 2015, 45 (09) :1613-1618
[10]  
Das S., SENS ACTUAT A PHYS