Sharp large deviations for the non-stationary Ornstein-Uhlenbeck process

被引:18
作者
Bercu, Bernard [1 ]
Coutin, Laure [2 ]
Savy, Nicolas [2 ]
机构
[1] Univ Bordeaux 1, UMR C5251, Inst Math Bordeaux, F-33405 Talence, France
[2] Univ Toulouse 3, Inst Math Toulouse, UMR C5583, F-31062 Toulouse 09, France
关键词
Large deviations; Ornstein-Uhlenbeck process; Likelihood estimation;
D O I
10.1016/j.spa.2012.06.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the Ornstein-Uhlenbeck process, the asymptotic behavior of the maximum likelihood estimator of the drift parameter is totally different in the stable, unstable, and explosive cases. Notwithstanding this trichotomy, we investigate sharp large deviation principles for this estimator in the three situations. In the explosive case, we exhibit a very unusual rate function with a shaped flat valley and an abrupt discontinuity point at its minimum. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3393 / 3424
页数:32
相关论文
共 17 条
[1]   SHARP LARGE DEVIATIONS FOR THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS [J].
Bercu, B. ;
Coutin, L. ;
Savy, N. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) :575-610
[2]  
Bercu B, 2001, THEOR PROBAB APPL+, V46, P1
[3]   On large deviations in the Gaussian autoregressive process: stable, unstable and explosive cases [J].
Bercu, B .
BERNOULLI, 2001, 7 (02) :299-316
[4]  
Bercu B., 2000, ESAIM-PROBAB STAT, V4, P1
[5]   ASYMPTOTIC LIKELIHOOD THEORY FOR DIFFUSION PROCESSES [J].
BROWN, BM ;
HEWITT, JI .
JOURNAL OF APPLIED PROBABILITY, 1975, 12 (02) :228-238
[6]   Large deviations for quadratic functionals of Gaussian processes [J].
Bryc, W ;
Dembo, A .
JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (02) :307-332
[7]  
Dembo A., 1998, APPL MATH, V38
[8]  
Dietz H., 2003, Statist. Decisions, V21, P29
[9]   MAXIMUM LIKELIHOOD ESTIMATION FOR CONTINUOUS-TIME STOCHASTIC-PROCESSES [J].
FEIGIN, PD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (04) :712-736
[10]   SOME COMMENTS CONCERNING A CURIOUS SINGULARITY [J].
FEIGIN, PD .
JOURNAL OF APPLIED PROBABILITY, 1979, 16 (02) :440-444