Polyethyleneimine functionalised nanocarbons for the efficient adsorption ofcarbon dioxide with a low temperature of regeneration

被引:23
作者
Dillon, Eoghan P. [1 ]
Andreoli, Enrico [1 ]
Cullum, Laurie [1 ]
Barron, Andrew R. [1 ,2 ,3 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[3] Swansea Univ, Coll Engn, Swansea SA2 8PP, W Glam, Wales
关键词
nanocarbons; polyethyleneimine; desorption; CO2; absorption; CARBON-DIOXIDE; SIDEWALL FUNCTIONALIZATION; CO2; ADSORPTION; CAPTURE; GRAPHENE; AMINES; GAS;
D O I
10.1080/17458080.2014.894256
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyethyleneimine (PEI) conjugates with a range of nanocarbons (NCs) have been prepared, and their performances with regard to carbon dioxide absorption and liberation are compared. PEI-functionalised multi-walled carbon nanotubes (PEI-MWNTs) prepared by the reaction of branched PEI (25,000 Da) with F-MWNTs in the presence of pyridine, showed a lower CO2 capacity at 25 degrees C (5wt%, 1.1mmol CO2/g adsorbent) as compared to PEI-SWNTs (9.2wt%, 2.1mmol CO2/g adsorbent), consistent with the interior layers of the MWNTs adding weight to the base NC without adding functionality. PEI-functionalised graphite/graphene was prepared by three routes: fluorinated graphite intercalation compounds, prepared from natural graphite powder, were reacted with PEI in EtOH with pyridine; exfoliated natural graphite powder was reacted with Boc-Phe(4-N-3)-OH, and subsequently PEI to give PEI-Phe(4-N-G); graphite oxide (GO) was reacted with PEI in the presence of NEt3 to give PEI-GO. The CO2 capacity of PEI-GO at 25 degrees C (8wt%, 1.8mmol CO2/g adsorbent) was comparable to that of PEI-SWNTs making GO a valid and cheaper alternative to the SWNT scaffold. The temperature of CO2 desorption of the PEI-NCs was 75 degrees C, providing a lower energy load for regeneration compared to current amine-based scrubbing units. The rate of CO2 uptake is seen to depend on the curvature of the NC substrate.
引用
收藏
页码:746 / 768
页数:23
相关论文
共 29 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]  
ALLADA RK, 2006, P 36 INT C ENV SYST
[3]   Rapidly estimating natural gas compressibility factor [J].
Bahadori, Alireza ;
Mokhatab, Saeid ;
Towler, Brian F. .
JOURNAL OF NATURAL GAS CHEMISTRY, 2007, 16 (04) :349-353
[4]   CO2 capture by a task-specific ionic liquid [J].
Bates, ED ;
Mayton, RD ;
Ntai, I ;
Davis, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) :926-927
[5]   Dynamics of CO2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design [J].
Bollini, Praveen ;
Brunelli, Nicholas A. ;
Didas, Stephanie A. ;
Jones, Christopher W. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (46) :15153-15162
[6]   The effect of water on the adsorption of CO2 and C3H8 on type X zeolites [J].
Brandani, F ;
Ruthven, DM .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (26) :8339-8344
[7]   Poly(allylamine)-Mesoporous Silica Composite Materials for CO2 Capture from Simulated Flue Gas or Ambient Air [J].
Chaikittisilp, Watcharop ;
Khunsupat, Ratayakorn ;
Chen, Thomas T. ;
Jones, Christopher W. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (24) :14203-14210
[8]   Graphite epoxide [J].
Chattopadhyay, Jayanta ;
Mukherjee, Arnab ;
Hamilton, Christopher E. ;
Kang, JungHo ;
Chakraborty, Soma ;
Guo, Wenhua ;
Kelly, Kevin F. ;
Barron, Andrew R. ;
Billups, W. Edward .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (16) :5414-+
[9]   Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases [J].
Choi, Sunho ;
Watanabe, Taku ;
Bae, Tae-Hyun ;
Sholl, David S. ;
Jones, Christopher W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (09) :1136-1141
[10]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854