HYPERCYCLICITY AND SUPERCYCLICITY OF m-ISOMETRIC OPERATORS

被引:18
作者
Ahmadi, M. Faghih [1 ]
Hedayatian, K. [1 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz 71454, Iran
关键词
Supercyclic operators; hypercyclic operators; m-isometries; TRANSFORMATIONS;
D O I
10.1216/RMJ-2012-42-1-15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An operator T defined on a Hilbert space 74, satisfying the equation Sigma(m)(k=0)(-1)(k) ((m)(k)) T*T-m-k(m-k) = 0, is called an m-isometry. In this paper, we prove that the orbits of vectors under m-isometries are eventually norm increasing. Also, it is shown that power bounded m-isometries are, in fact, isometries. Moreover, we show that all m-isometries are neither supercyclic nor weakly hypercyclic.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 15 条
[1]   M-ISOMETRIC TRANSFORMATIONS OF HILBERT-SPACE .1. [J].
AGLER, J ;
STANKUS, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 21 (04) :383-429
[2]   m-Isometric transformations of Hilbert space .3. [J].
Agler, J ;
Stankus, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 24 (04) :379-421
[3]   M-ISOMETRIC TRANSFORMATIONS OF HILBERT-SPACE .2. [J].
AGLER, J ;
STANKUS, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 23 (01) :1-48
[4]  
Ahmadi M. Faghih, 2008, [Honam Mathematical Journal, 호남수학학술지], V30, P115
[5]  
Ansari SI., 1997, Acta Sci. Math. (Szeged), V63, P195
[6]  
ATHAVALE A, 1991, P AM MATH SOC, V112, P701
[7]  
Chan KC, 2004, J OPERAT THEOR, V52, P39
[8]  
Feldman N.S., 2003, TRENDS BANACH SPACES
[9]  
HEDAYATIAN K., 2004, ITALIAN J PURE APPL, V16, P193
[10]   SOME CYCLIC AND NON-CYCLIC VECTORS OF CERTAIN OPERATORS [J].
HILDEN, HM ;
WALLEN, LJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (07) :557-565