FINE SELMER GROUP OF HIDA DEFORMATIONS OVER NON-COMMUTATIVE p-ADIC LIE EXTENSIONS

被引:0
作者
Jha, Somnath [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
Selmer group; congruences of modular forms; Hida theory; p-adic Galois representation; non-commutative Iwasawa theory; IWASAWA; REPRESENTATIONS; INVARIANTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Selmer group and the fine Selmer group of p-adic Galois representations defined over a non-commutative p-adic Lie extension and their Hida deformations. For the fine Selmer group, we generalize the pseudonullity conjecture of [C-S] in this context and discuss its invariance in a branch of a Hida family. We relate the structure of the 'big' Selmer (resp. fine Selmer) group with the specialized individual Selmer (resp. fine Selmer) groups.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 16 条
[1]  
Carayol H., 1994, Contemp. Math., V165, P213
[2]   Fine Selmer groups of elliptic curves over p-adic Lie extensions [J].
Coates, J ;
Sujatha, R .
MATHEMATISCHE ANNALEN, 2005, 331 (04) :809-839
[3]   Computations in non-commutative Iwasawa theory [J].
Dokchitser, T. ;
Dokchitser, V. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :211-272
[4]   Variation of Iwasawa invariants in Hida families [J].
Emerton, M ;
Pollack, R ;
Weston, T .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :523-580
[5]  
Greenberg R, 1999, LECT NOTES MATH, V1716, P51
[7]   Structure of central torsion Iwasawa modules [J].
Howson, S .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04) :507-535
[8]   Euler characteristics as invariants of Iwasawa modules [J].
Howson, S .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :634-658
[9]   On the Hida deformations of fine Selmer groups [J].
Jha, Somnath ;
Sujatha, R. .
JOURNAL OF ALGEBRA, 2011, 338 (01) :180-196
[10]  
Kato K, 2004, ASTERISQUE, P117