A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model

被引:60
作者
Zhang, S. [1 ]
Liu, Z. [2 ,3 ,4 ]
Rosati, A. [1 ]
Delworth, T. [1 ]
机构
[1] Princeton Univ, GFDL NOAA, Princeton, NJ 08542 USA
[2] Univ Wisconsin, Ctr Climate Res, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA
[4] Peking Univ, Lab Ocean Atmospher Studies, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
Coupled model bias; climate drift; parameter optimization; coupled data assimilation; SIMULATED RADAR DATA; ROOT KALMAN FILTER; MICROPHYSICAL PARAMETERS; SIMULTANEOUS STATE; ATMOSPHERIC STATE; PART II; IMPACT; PERFORMANCE; COVARIANCE; ADJUSTMENT;
D O I
10.3402/tellusa.v64i0.10963
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Uncertainties in physical parameters of coupled models are an important source of model bias and adversely impact initialisation for climate prediction. Data assimilation using error covariances derived from model dynamics to extract observational information provides a promising approach to optimise parameter values so as to reduce such bias. However, effective parameter estimation in a coupled model is usually difficult because the error covariance between a parameter and the model state tends to be noisy due to multiple sources of model uncertainties. Using a simple coupled model consisting of the 3-variable Lorenz model and a slowly varying slab 'ocean', this study first investigated how to enhance the signal-to-noise ratio in covariances between model states and parameters, and then designed a data assimilation scheme for enhancive parameter correction (DAEPC). In DAEPC, parameter estimation is facilitated after state estimation reaches a 'quasi-equilibrium' where the uncertainty of coupled model states is sufficiently constrained by observations so that the covariance between a parameter and the model state is signal dominant. The observation-updated parameters are applied to improving the next cycle of state estimation and the refined covariance of parameter and model state further improves parameter correction. Performing dynamically adaptive state and parameter estimations with speedy convergence, DAEPC provides a systematic way to estimate the whole array of coupled model parameters using observations, and produces more accurate state estimates. Forecast experiments show that the DAEPC initialisation with observation-estimated parameters greatly improves the model predictability - while valid 'atmospheric' forecasts are extended two times longer, the 'oceanic' predictability is almost tripled. The simple model results here provide some insights for improving climate estimation and prediction with a coupled general circulation model.
引用
收藏
页数:20
相关论文
共 52 条
[1]   Ensemble-based simultaneous state and parameter estimation with MM5 [J].
Aksoy, Altug ;
Zhang, Fuqing ;
Nielsen-Gammon, John W. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (12)
[2]   Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model [J].
Aksoy, Altug ;
Zhang, Fuqing ;
Nielsen-Gammon, John W. .
MONTHLY WEATHER REVIEW, 2006, 134 (10) :2951-2970
[3]   An adaptive covariance inflation error correction algorithm for ensemble filters [J].
Anderson, Jeffrey L. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (02) :210-224
[4]  
Anderson JL, 2003, MON WEATHER REV, V131, P634, DOI 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO
[5]  
2
[6]  
Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
[7]  
2
[8]   Efficient parameter estimation for a highly chaotic system [J].
Annan, JD ;
Hargreaves, JC .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2004, 56 (05) :520-526
[9]   Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter [J].
Annan, JD ;
Hargreaves, JC ;
Edwards, NR ;
Marsh, R .
OCEAN MODELLING, 2005, 8 (1-2) :135-154
[10]  
[Anonymous], DYNAMIC METEOROLOGY