AUSLANDER'S THEOREM FOR PERMUTATION ACTIONS ON NONCOMMUTATIVE ALGEBRAS

被引:13
作者
Gaddis, Jason [1 ]
Kirkman, Ellen [2 ]
Moore, W. Frank [2 ]
Won, Robert [3 ]
机构
[1] Miami Univ, Dept Math, 301 S Patterson Ave, Oxford, OH 45056 USA
[2] Wake Forest Univ, Dept Math & Stat, POB 7388, Winston Salem, NC 27109 USA
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
基金
芬兰科学院;
关键词
SEMISIMPLE HOPF ACTIONS; MODULES;
D O I
10.1090/proc/14363
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When A = k[x(1),..., x(n)] and G is a small subgroup of GL(n)(k), Auslander's Theorem says that the skew group algebra A#G is isomorphic to End (G)(A)(A) as graded algebras. We prove a generalization of Auslander's Theorem for permutation actions on (-1)-skew polynomial rings, (-1)-quantum Weyl algebras, three-dimensional Sklyanin algebras, and a certain homogeneous down-up algebra. We also show that certain fixed rings A(G) are graded isolated singularities in the sense of Ueyama.
引用
收藏
页码:1881 / 1896
页数:16
相关论文
共 26 条
[1]   PURITY OF BRANCH LOCUS [J].
AUSLANDER, M .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (01) :116-&
[2]   NONCOMMUTATIVE AUSLANDER THEOREM [J].
Bao, Y. -H. ;
He, J. -W. ;
Zhang, J. J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) :8613-8638
[3]  
Bao Y.-H., 2016, J NONCOMMUT GEOM
[4]   GROTHENDIECK GROUPS OF INVARIANT RINGS AND OF GROUP-RINGS [J].
BROWN, KA ;
LORENZ, M .
JOURNAL OF ALGEBRA, 1994, 166 (03) :423-454
[5]  
Buchweitz RO, 2003, CONTEMP MATH, V331, P25
[6]   ON TWISTED TENSOR-PRODUCTS OF ALGEBRAS [J].
CAP, A ;
SCHICHL, H ;
VANZURA, J .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (12) :4701-4735
[7]   McKay correspondence for semisimple Hopf actions on regular graded algebras, I [J].
Chan, K. ;
Kirkman, E. ;
Walton, C. ;
Zhang, J. J. .
JOURNAL OF ALGEBRA, 2018, 508 :512-538
[8]   INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS [J].
CHEVALLEY, C .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) :778-782
[9]   Semisimple Hopf actions on commutative domains [J].
Etingof, Pavel ;
Walton, Chelsea .
ADVANCES IN MATHEMATICS, 2014, 251 :47-61
[10]  
Grayson Daniel R., Macaulay2, a software system for research inalgebraic geometry