Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies

被引:34
作者
Cameron, C. M. [3 ]
Harding, Frances [1 ,2 ,3 ]
Hu, Wei-Shou [3 ]
Kaufman, S. [1 ,2 ]
机构
[1] Univ Minnesota, Stem Cell Inst, Translat Res Facil, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Med, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
human embryonic stem cell; embryoid body; hematopoiesis; hypoxia; hypoxic inducible factor (HIF);
D O I
10.3181/0709-RM-263
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Oxygen tension can provide an important determinant for differentiation and development of many cells and tissues. Genetic regulation of hemato-endothelial commitment is known to respond to oxygen deprivation via stimulation of hypoxia inducible factors (HIFs). Here, we use a closed bioreactor system to monitor and control the dissolved oxygen during differentiation of human embryonic stem cells (hESCs) via formation of embryoid bodies (hEBs). Exposing hESC-derived EBs to ambient oxygen at or below 5% results in stabilization of HIF-1 alpha and increased transcription of hypoxic responsive genes. Interestingly, we find that rather than HIF-1a expression being stable over prolonged (7-16 days) culture in hypoxic conditions, HIF-1 alpha expression peaks after approximately 48 hours of hypoxic exposure, and then declines to near undetectable levels, despite constant hypoxic exposure. This transient stabilization of HIF-1a during hESC-derived EB culture is demonstrated for four distinct stages of differentiation. Furthermore, we demonstrate hEB cell expansion is slowed by hypoxic exposure, with increased apoptosis. However, hEB cell proliferation returns to normal rates upon return to normoxic conditions. Therefore, although hypoxia effectively stimulates hypoxic responsive genes, this single variable was not sufficient to improve development of hemato-endothelial cells from hESCs.
引用
收藏
页码:1044 / 1057
页数:14
相关论文
共 64 条
[1]   Multilineage embryonic hematopoiesis requires hypoxic ARNT activity [J].
Adelman, DM ;
Maltepe, E ;
Simon, MC .
GENES & DEVELOPMENT, 1999, 13 (19) :2478-2483
[2]   Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture [J].
Amit, M ;
Carpenter, MK ;
Inokuma, MS ;
Chiu, CP ;
Harris, CP ;
Waknitz, MA ;
Itskovitz-Eldor, J ;
Thomson, JA .
DEVELOPMENTAL BIOLOGY, 2000, 227 (02) :271-278
[3]   EVIDENCE THAT HYPOXIA MARKERS DETECT OXYGEN GRADIENTS IN LIVER - PIMONIDAZOLE AND RETROGRADE PERFUSION OF RAT-LIVER [J].
ARTEEL, GE ;
THURMAN, RG ;
YATES, JM ;
RALEIGH, JA .
BRITISH JOURNAL OF CANCER, 1995, 72 (04) :889-895
[4]   Derivation of the hematopoietic stem cell compartment from human embryonic stem cell lines [J].
Bhatia, M .
HEMATOPOIETIC STEM CELLS V, 2005, 1044 :24-28
[5]   Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation [J].
Cameron, C. M. ;
Hu, Wei-Shou ;
Kaufman, Dan S. .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 94 (05) :938-948
[6]   Role of HIF-1α or in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis [J].
Carmeliet, P ;
Dor, Y ;
Herbert, JM ;
Fukumura, D ;
Brusselmans, K ;
Dewerchin, M ;
Neeman, M ;
Bono, F ;
Abramovitch, R ;
Maxwell, P ;
Koch, CJ ;
Ratcliffe, P ;
Moons, L ;
Jain, RK ;
Collen, D ;
Keshet, E .
NATURE, 1998, 394 (6692) :485-490
[7]   Characterization and differentiation of human embryonic stem cells [J].
Carpenter, MK ;
Rosler, E ;
Rao, MS .
CLONING AND STEM CELLS, 2003, 5 (01) :79-88
[8]   Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells [J].
Chadwick, K ;
Wang, LS ;
Li, L ;
Menendez, P ;
Murdoch, B ;
Rouleau, A ;
Bhatia, M .
BLOOD, 2003, 102 (03) :906-915
[9]   The expansion of murine bone marrow cells preincubated in hypoxia as an in vitro indicator of their marrow-repopulating ability [J].
Cipolleschi, MG ;
Rovida, E ;
Ivanovic, Z ;
Praloran, V ;
Olivotto, M ;
Dello Sbarba, P .
LEUKEMIA, 2000, 14 (04) :735-739
[10]   Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein [J].
Cockman, ME ;
Masson, N ;
Mole, DR ;
Jaakkola, P ;
Chang, GW ;
Clifford, SC ;
Maher, ER ;
Pugh, CW ;
Ratcliffe, PJ ;
Maxwell, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25733-25741