On the stochastic SIS epidemic model in a periodic environment

被引:14
作者
Bacaer, Nicolas [1 ,2 ]
机构
[1] IRD, UMMISCO, Bondy, France
[2] Univ Paris 06, UMMISCO, Paris, France
关键词
Hamilton-Jacobi equation; Epidemic model; Extinction; Periodic environment; BEHAVIOR;
D O I
10.1007/s00285-014-0828-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the stochastic SIS epidemic model with a contact rate , a recovery rate , and a population size , the mean extinction time is such that converges to as grows to infinity. This article considers the more realistic case where the contact rate is a periodic function whose average is bigger than . Then converges to a new limit , which is linked to a time-periodic Hamilton-Jacobi equation. When is a cosine function with small amplitude or high (resp. low) frequency, approximate formulas for can be obtained analytically following the method used in Assaf et al. (Phys Rev E 78:041123, 2008). These results are illustrated by numerical simulations.
引用
收藏
页码:491 / 511
页数:21
相关论文
共 21 条
[1]   A threshold limit theorem for the stochastic logistic epidemic [J].
Andersson, H ;
Djehiche, B .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (03) :662-670
[2]  
[Anonymous], 2012, Mathematical Tools for Understanding Infectious Disease Dynamics
[3]   DIFFERENTIAL-EQUATION ARISING FROM COMPARTMENTAL ANALYSIS [J].
ARONSSON, G ;
KELLOGG, RB .
MATHEMATICAL BIOSCIENCES, 1978, 38 (1-2) :113-122
[4]   Extinction of metastable stochastic populations [J].
Assaf, Michael ;
Meerson, Baruch .
PHYSICAL REVIEW E, 2010, 81 (02)
[5]   Population extinction in a time-modulated environment [J].
Assaf, Michael ;
Kamenev, Alex ;
Meerson, Baruch .
PHYSICAL REVIEW E, 2008, 78 (04)
[6]   On the biological interpretation of a definition for the parameter R0 in periodic population models [J].
Bacaer, Nicolas ;
Dads, El Hadi Ait .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) :601-621
[7]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[8]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi
[9]   Intervention-Based Stochastic Disease Eradication [J].
Billings, Lora ;
Mier-y-Teran-Romero, Luis ;
Lindley, Brandon ;
Schwartz, Ira B. .
PLOS ONE, 2013, 8 (08)
[10]   Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation [J].
Doering, CR ;
Sargsyan, KV ;
Sander, LM .
MULTISCALE MODELING & SIMULATION, 2005, 3 (02) :283-299