Lithium metal anodes: Present and future

被引:427
作者
Wang, Renheng [2 ]
Cui, Weisheng [2 ]
Chu, Fulu [1 ]
Wu, Feixiang [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 48卷
基金
中国国家自然科学基金;
关键词
ATOMIC LAYER DEPOSITION; ELECTROLYTE INTERPHASE LAYER; POLYMER SOLID ELECTROLYTES; LI-ION CONDUCTORS; LONG-CYCLE-LIFE; RECHARGEABLE LITHIUM; DENDRITE GROWTH; CURRENT COLLECTOR; NANOWIRE NETWORK; STABLE HOST;
D O I
10.1016/j.jechem.2019.12.024
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Commercial lithium-ion (Li-ion) batteries based on graphite anodes are meeting their bottlenecks that are limited energy densities. In order to satisfy the large market demands of smaller and lighter rechargeable batteries, high-capacity metallic Li replacing low-specific-capacity graphite enables the higher energy density in next-generation rechargeable Li metal batteries (LMBs). However, Li metal anode has been suffering from dendritic problems, interfacial side reactions, volume change and low Coulombic efficiency. Therefore, performance enhancements of Li metal anodes are rather important to realize the high energy density characteristic of metallic Li. In this review, the annoying Li dendrite growth, unstable reaction interface and practical application issues of Li metal anodes are summarized and detailedly discussed to understand the current challenges concerning Li metal anodes. For overcoming such remaining challenges, the corresponding strategies and recent advances are covered and categorized. Finally, we discuss future opportunities and perspectives for developing high-performance Li metal anodes. © 2020
引用
收藏
页码:145 / 159
页数:15
相关论文
共 194 条
[1]   Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Next-Generation Battery Systems [J].
Adair, Keegan R. ;
Zhao, Changtai ;
Banis, Mohammad Norouzi ;
Zhao, Yang ;
Li, Ruying ;
Cai, Mei ;
Sun, Xueliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (44) :15797-15802
[2]   In Situ Dendrite Suppression Study of Nanolayer Encapsulated Li Metal Enabled by Zirconia Atomic Layer Deposition [J].
Alaboina, Pankaj K. ;
Rodrigues, Stanley ;
Rottmayer, Michael ;
Cho, Sung-Jin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (38) :32801-32808
[3]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[4]  
[Anonymous], LITHIUM METAL BATTER
[5]  
[Anonymous], ADV MAT
[6]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[7]   POLYMER SOLID ELECTROLYTES - STABILITY DOMAIN [J].
ARMAND, MB ;
DUCLOT, MJ ;
RIGAUD, P .
SOLID STATE IONICS, 1981, 3-4 (AUG) :429-430
[8]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[9]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[10]   Liquid-Free Lithium-Oxygen Batteries [J].
Balaish, Moran ;
Peled, Emanuel ;
Golodnitsky, Diana ;
Ein-Eli, Yair .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (02) :436-440