HisCoM-GGI: Hierarchical structural component analysis of gene-gene interactions

被引:10
作者
Choi, Sungkyoung [1 ]
Lee, Sungyoung [2 ]
Kim, Yongkang [3 ,4 ]
Hwang, Heungsun [4 ]
Park, Taesung [3 ,5 ]
机构
[1] Yonsei Univ, Coll Med, Dept Pharmacol, 50-1 Yonsei Ro, Seoul 03722, South Korea
[2] Seoul Natl Univ Hosp, Ctr Precis Med, 71 Daehak Ro, Seoul 03082, South Korea
[3] Seoul Natl Univ, Dept Stat, 1 Gwanak Ro, Seoul 08826, South Korea
[4] McGill Univ, Dept Psychol, 2001 Ave McGill Coll, Montreal, PQ H3A 1G1, Canada
[5] Seoul Natl Univ, Interdisciplinary Program Bioinformat, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Genome-wide association study; gene-gene interactions; generalized structured component analysis; ridge regression; MULTIFACTOR-DIMENSIONALITY REDUCTION; GENOME-WIDE ASSOCIATION; SNP-SNP INTERACTIONS; VARIABLE SELECTION; MISSING HERITABILITY; STRATEGIES; EPISTASIS; INFERENCE; LOCI; POLYMORPHISMS;
D O I
10.1142/S0219720018400267
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Although genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated with common diseases, these observations are limited for fully explaining "missing heritability". Determining gene-gene interactions (GGI) are one possible avenue for addressing the missing heritability problem. While many statistical approaches have been proposed to detect GGI, most of these focus primarily on SNP-to-SNP interactions. While there are many advantages of gene-based GGI analyses, such as reducing the burden of multiple-testing correction, and increasing power by aggregating multiple causal signals across SNPs in specific genes, only a few methods are available. In this study, we proposed a new statistical approach for gene-based GGI analysis, "Hierarchical structural CoMponent analysis of Gene-Gene Interactions" (HisCoM-GGI). HisCoM-GGI is based on generalized structured component analysis, and can consider hierarchical structural relationships between genes and SNPs. For a pair of genes, HisCoM-GGI first effectively summarizes all possible pairwise SNP-SNP interactions into a latent variable, from which it then performs GGI analysis. HisCoM-GGI can evaluate both gene-level and SNP-level interactions. Through simulation studies, HisCoM-GGI demonstrated higher statistical power than existing gene-based GGI methods, in analyzing a GWAS of a Korean population for identifying GGI associated with body mass index. Resultantly, HisCoM-GGI successfully identified 14 potential GGI, two of which, (NCOR2 x SPOCK1) and (LINGO2 x ZNF385D) were successfully replicated in independent datasets. We conclude that HisCoM-GGI method may be a valuable tool for genome to identify GGI in missing heritability, allowing us to better understand the biological genetic mechanisms of complex traits. We conclude that HisCoM-GGI method may be a valuable tool for genome to identify GGI in missing heritability, allowing us to better understand biological genetic mechanisms of complex traits. An implementation of HisCoM-GGI can be downloaded from the website (http://statgen.snu.ac.kr/software/hiscom-ggi).
引用
收藏
页数:25
相关论文
共 89 条
[1]  
[Anonymous], 1936, PUBBLICAZIONI R I SU
[2]  
[Anonymous], 2009, ELEMENTS STAT LEARNI
[3]   A low-frequency GLIS3 variant associated with resistance to Japanese type 1 diabetes [J].
Awata, Takuya ;
Yamashita, Hisakuni ;
Kurihara, Susumu ;
Morita-Ohkubo, Tomoko ;
Miyashita, Yumi ;
Katayama, Shigehiro ;
Kawasaki, Eiji ;
Tanaka, Shoichiro ;
Ikegami, Hiroshi ;
Maruyama, Taro ;
Shimada, Akira ;
Takahashi, Kazuma ;
Kawabata, Yumiko ;
Kobayashi, Tetsuro ;
Nishida, Nao ;
Mawatari, Yoriko .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 437 (04) :521-525
[4]   Haploview: analysis and visualization of LD and haplotype maps [J].
Barrett, JC ;
Fry, B ;
Maller, J ;
Daly, MJ .
BIOINFORMATICS, 2005, 21 (02) :263-265
[5]   Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering [J].
Browning, Sharon R. ;
Browning, Brian L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) :1084-1097
[6]   Discovery by the Epistasis Project of an epistatic interaction between the GSTM3 gene and the HHEX/IDE/KIF11 locus in the risk of Alzheimer's disease [J].
Bullock, James M. ;
Medway, Christopher ;
Cortina-Borja, Mario ;
Turton, James C. ;
Prince, Jonathan A. ;
Ibrahim-Verbaas, Carla A. ;
Schuur, Maaike ;
Breteler, Monique M. ;
van Duijn, Cornelia M. ;
Kehoe, Patrick G. ;
Barber, Rachel ;
Coto, Eliecer ;
Alvarez, Victoria ;
Deloukas, Panos ;
Hammond, Naomi ;
Combarros, Onofre ;
Mateo, Ignacio ;
Warden, Donald R. ;
Lehmann, Michael G. ;
Belbin, Olivia ;
Brown, Kristelle ;
Wilcock, Gordon K. ;
Heun, Reinhard ;
Koelsch, Heike ;
Smith, A. David ;
Lehmann, Donald J. ;
Morgan, Kevin .
NEUROBIOLOGY OF AGING, 2013, 34 (04) :1309.e1-1309.e7
[7]   Improving strategies for detecting genetic patterns of disease susceptibility in association studies [J].
Calle, M. L. ;
Urrea, V. ;
Vellalta, G. ;
Malats, N. ;
Steen, K. V. .
STATISTICS IN MEDICINE, 2008, 27 (30) :6532-6546
[8]  
Che K, 2016, IEEE INT C BIOINFORM, P1247, DOI 10.1109/BIBM.2016.7822697
[9]   A support vector machine approach for detecting gene-gene interaction [J].
Chen, Shyh-Huei ;
Sun, Jielin ;
Dimitrov, Latchezar ;
Turner, Aubrey R. ;
Adams, Tamara S. ;
Meyers, Deborah A. ;
Chang, Bao-Li ;
Zheng, S. Lilly ;
Groenberg, Henrik ;
Xu, Jianfeng ;
Hsu, Fang-Chi .
GENETIC EPIDEMIOLOGY, 2008, 32 (02) :152-167
[10]   Variations in DNA elucidate molecular networks that cause disease [J].
Chen, Yanqing ;
Zhu, Jun ;
Lum, Pek Yee ;
Yang, Xia ;
Pinto, Shirly ;
MacNeil, Douglas J. ;
Zhang, Chunsheng ;
Lamb, John ;
Edwards, Stephen ;
Sieberts, Solveig K. ;
Leonardson, Amy ;
Castellini, Lawrence W. ;
Wang, Susanna ;
Champy, Marie-France ;
Zhang, Bin ;
Emilsson, Valur ;
Doss, Sudheer ;
Ghazalpour, Anatole ;
Horvath, Steve ;
Drake, Thomas A. ;
Lusis, Aldons J. ;
Schadt, Eric E. .
NATURE, 2008, 452 (7186) :429-435