Deep Learning-Based Cooperative Automatic Modulation Classification Method for MIMO Systems

被引:97
|
作者
Wang, Yu [1 ]
Wang, Juan [1 ]
Zhang, Wei [2 ]
Yang, Jie [1 ]
Gui, Guan [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic modulation classification; multiple-input multiple-output (MIMO); deep learning (DL); convolutional neural network (CNN); cooperative decision; NEURAL-NETWORK; INTELLIGENT; RECOGNITION;
D O I
10.1109/TVT.2020.2976942
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-cooperative communication systems. Recently, it has been demonstrated that deep learning (DL)-based AMC method effectively works in the single-input single-output (SISO) systems, but DL-based AMC method is scarcely explored in the multiple-input multiple-output (MIMO) systems. In this correspondence, we propose a convolutional neural network (CNN)-based cooperative AMC (Co-AMC) method for the MIMO systems, where the receiver, equipped with multiple antennas, cooperatively recognizes the modulation types. Specifically, each received antenna gives their recognition sub-results via the CNN, respectively. Then, the decision maker identifies the modulation types, based on these sub-results and cooperative decision rules, such as direct voting (DV), weighty voting (WV), direct averaging (DA) and weighty averaging (WA). The simulation results demonstrate that the Co-AMC method, based on the CNN and WA, has the highest correct classification probability in the four cooperative decision rules. In addition, the CNN-based Co-AMC method also performs better than the high order cumulants (HOC)-based traditionalAMCmethods, which shows the effective feature extraction and powerful classification capabilities of the CNN.
引用
收藏
页码:4575 / 4579
页数:5
相关论文
共 50 条
  • [41] Efficient Deep Learning-Based Detection Scheme for MIMO Communication Systems
    Ibarra-Hernandez, Roilhi F.
    Castillo-Soria, Francisco R.
    Gutierrez, Carlos A.
    Del-Puerto-Flores, Jose Alberto
    Acosta-Elias, Jesus
    Rodriguez-Abdala, Viktor I.
    Palacios-Luengas, Leonardo
    SENSORS, 2025, 25 (03)
  • [42] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [43] Multiscale Correlation Networks Based on Deep Learning for Automatic Modulation Classification
    Xiao, Jing
    Wang, Yufeng
    Zhang, Duona
    Ma, Qinyan
    Ding, Wenrui
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 633 - 637
  • [44] Automatic Modulation Classification Based on Constellation Density Using Deep Learning
    Kumar, Yogesh
    Sheoran, Manu
    Jajoo, Gaurav
    Yadav, Sandeep Kumar
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (06) : 1275 - 1278
  • [45] Multimodal attention-based deep learning for automatic modulation classification
    Han, Jia
    Yu, Zhiyong
    Yang, Jian
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [46] Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles
    Zhang, Duona
    Ding, Wenrui
    Zhang, Baochang
    Xie, Chunyu
    Li, Hongguang
    Liu, Chunhui
    Han, Jungong
    SENSORS, 2018, 18 (03)
  • [47] Autocorrelation Convolution Networks Based on Deep Learning for Automatic Modulation Classification
    Zhang, Duona
    Ding, Wenrui
    Wang, Hongyu
    Zhang, Baochang
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1561 - 1565
  • [48] Dive Into Deep Learning Based Automatic Modulation Classification: A Disentangled Approach
    Shang, Xiaolei
    Hu, Honglin
    Li, Xiaoqiang
    Xu, Tianheng
    Zhou, Ting
    IEEE ACCESS, 2020, 8 : 113271 - 113284
  • [49] Deep Learning based Automatic Modulation Classification for Varying SNR Environment
    Xie, Xiaojuan
    Ni, Yanqin
    Peng, Shengliang
    Yao, Yu-Dong
    2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 18 - 22
  • [50] A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning
    Rehman, Arshia
    Naz, Saeeda
    Razzak, Muhammad Imran
    Akram, Faiza
    Imran, Muhammad
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (02) : 757 - 775