Deep Learning-Based Cooperative Automatic Modulation Classification Method for MIMO Systems

被引:97
|
作者
Wang, Yu [1 ]
Wang, Juan [1 ]
Zhang, Wei [2 ]
Yang, Jie [1 ]
Gui, Guan [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic modulation classification; multiple-input multiple-output (MIMO); deep learning (DL); convolutional neural network (CNN); cooperative decision; NEURAL-NETWORK; INTELLIGENT; RECOGNITION;
D O I
10.1109/TVT.2020.2976942
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-cooperative communication systems. Recently, it has been demonstrated that deep learning (DL)-based AMC method effectively works in the single-input single-output (SISO) systems, but DL-based AMC method is scarcely explored in the multiple-input multiple-output (MIMO) systems. In this correspondence, we propose a convolutional neural network (CNN)-based cooperative AMC (Co-AMC) method for the MIMO systems, where the receiver, equipped with multiple antennas, cooperatively recognizes the modulation types. Specifically, each received antenna gives their recognition sub-results via the CNN, respectively. Then, the decision maker identifies the modulation types, based on these sub-results and cooperative decision rules, such as direct voting (DV), weighty voting (WV), direct averaging (DA) and weighty averaging (WA). The simulation results demonstrate that the Co-AMC method, based on the CNN and WA, has the highest correct classification probability in the four cooperative decision rules. In addition, the CNN-based Co-AMC method also performs better than the high order cumulants (HOC)-based traditionalAMCmethods, which shows the effective feature extraction and powerful classification capabilities of the CNN.
引用
收藏
页码:4575 / 4579
页数:5
相关论文
共 50 条
  • [21] Deep Learning-Based Channel Estimation Method for MIMO Systems in Spatially Correlated Channels
    Lee, Sanggeun
    Sim, Dongkyu
    IEEE ACCESS, 2024, 12 : 79082 - 79090
  • [22] Deep Learning-Based Automated Modulation Classification for Cognitive Radio
    Mendis, Gihan J.
    Wei, Jin
    Madanayake, Arjuna
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS), 2016,
  • [23] Data Augmentation for Deep Learning-Based Radio Modulation Classification
    Huang, Liang
    Pan, Weijian
    Zhang, You
    Qian, Liping
    Gao, Nan
    Wu, Yuan
    IEEE ACCESS, 2020, 8 : 1498 - 1506
  • [24] A Dictionary Learning Based Automatic Modulation Classification Method
    Zhang, Kezhong
    Xu, Easton Li
    Feng, Zhiyong
    Zhang, Ping
    IEEE ACCESS, 2018, 6 : 5607 - 5617
  • [25] Effective Feature Selection Method for Deep Learning-Based Automatic Modulation Classification Scheme Using Higher-Order Statistics
    Lee, Sang Hoon
    Kim, Kwang-Yul
    Shin, Yoan
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [26] Deep Learning-Based Channel Estimation for Massive MIMO Systems
    Chun, Chang-Jae
    Kang, Jae-Mo
    Kim, Il-Min
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1228 - 1231
  • [27] Deep Learning-Based Limited Feedback Designs for MIMO Systems
    Jang, Jeonghyeon
    Lee, Hoon
    Hwang, Sangwon
    Ren, Haibao
    Lee, Inkyu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (04) : 558 - 561
  • [28] Imperceptible UAPs for Automatic Modulation Classification Based on Deep Learning
    Xu, Dongwei
    Li, Jiangpeng
    Chen, Zhuangzhi
    Xuan, Qi
    Shen, Weiguo
    Yang, Xiaoniu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (02) : 987 - 991
  • [29] Deep Learning-Based Automatic Modulation Classification Using Robust CNN Architecture for Cognitive Radio Networks
    Abd-Elaziz, Ola Fekry
    Abdalla, Mahmoud
    Elsayed, Rania A.
    SENSORS, 2023, 23 (23)
  • [30] Deep Learning-Based Method for Classification of Sugarcane Varieties
    Kai, Priscila Marques
    de Oliveira, Bruna Mendes
    da Costa, Ronaldo Martins
    AGRONOMY-BASEL, 2022, 12 (11):