Deep Learning-Based Cooperative Automatic Modulation Classification Method for MIMO Systems

被引:97
|
作者
Wang, Yu [1 ]
Wang, Juan [1 ]
Zhang, Wei [2 ]
Yang, Jie [1 ]
Gui, Guan [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic modulation classification; multiple-input multiple-output (MIMO); deep learning (DL); convolutional neural network (CNN); cooperative decision; NEURAL-NETWORK; INTELLIGENT; RECOGNITION;
D O I
10.1109/TVT.2020.2976942
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-cooperative communication systems. Recently, it has been demonstrated that deep learning (DL)-based AMC method effectively works in the single-input single-output (SISO) systems, but DL-based AMC method is scarcely explored in the multiple-input multiple-output (MIMO) systems. In this correspondence, we propose a convolutional neural network (CNN)-based cooperative AMC (Co-AMC) method for the MIMO systems, where the receiver, equipped with multiple antennas, cooperatively recognizes the modulation types. Specifically, each received antenna gives their recognition sub-results via the CNN, respectively. Then, the decision maker identifies the modulation types, based on these sub-results and cooperative decision rules, such as direct voting (DV), weighty voting (WV), direct averaging (DA) and weighty averaging (WA). The simulation results demonstrate that the Co-AMC method, based on the CNN and WA, has the highest correct classification probability in the four cooperative decision rules. In addition, the CNN-based Co-AMC method also performs better than the high order cumulants (HOC)-based traditionalAMCmethods, which shows the effective feature extraction and powerful classification capabilities of the CNN.
引用
收藏
页码:4575 / 4579
页数:5
相关论文
共 50 条
  • [11] Automatic Modulation Classification for MIMO Systems via Deep Learning and Zero-Forcing Equalization
    Wang, Yu
    Gui, Jie
    Yin, Yue
    Wang, Juan
    Sun, Jinlong
    Gui, Guan
    Gacanin, Haris
    Sari, Hikmet
    Adachi, Fumiyuki
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 5688 - 5692
  • [12] Deep Learning-Based Automatic Modulation Recognition Method in the Presence of Phase Offset
    Shi, Jie
    Hong, Sheng
    Cai, Changxin
    Wang, Yu
    Huang, Hao
    Gui, Guan
    IEEE ACCESS, 2020, 8 : 42841 - 42847
  • [13] A software-defined radio testbed for deep learning-based automatic modulation classification
    Ponnaluru, Sowjanya
    Penke, Satyanarayana
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2020, 33 (15)
  • [14] Deep Learning based Automatic Signal Modulation Classification
    Lu, Jingyang
    Li, Yi
    Chen, Genshe
    Shen, Dan
    Tian, Xin
    Khanh Pham
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XII, 2019, 11017
  • [15] A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
    Aer, Sileng
    Qi, Chenhao
    CHINA COMMUNICATIONS, 2024, 21 (08) : 18 - 29
  • [16] A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
    Aer Sileng
    Qi Chenhao
    China Communications, 2024, 21 (08) : 18 - 29
  • [17] A Deep Learning-Based Robust Automatic Modulation Classification Scheme for Next-Generation Networks
    Kumaravelu, Vinoth Babu
    Gudla, Vishnu Vardhan
    Murugadass, Arthi
    Jadhav, Hindavi
    Prakasam, P.
    Imoize, Agbotiname Lucky
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (04)
  • [18] Automatic Modulation Classification in Deep Learning
    Alnajjar, Khawla A.
    Ghunaim, Sara
    Ansari, Sam
    2022 5TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND THEIR APPLICATIONS (ICCSPA), 2022,
  • [19] Adversarial Transfer Learning for Deep Learning Based Automatic Modulation Classification
    Bu, Ke
    He, Yuan
    Jing, Xiaojun
    Han, Jindong
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 880 - 884
  • [20] Deep Learning-Based Modulation Detection for NOMA Systems
    Xie, Wenwu
    Xiao, Jian
    Yang, Jinxia
    Wang, Ji
    Peng, Xin
    Yu, Chao
    Zhu, Peng
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (02) : 658 - 672