共 34 条
Deep Learning-Based Cooperative Automatic Modulation Classification Method for MIMO Systems
被引:98
作者:
Wang, Yu
[1
]
Wang, Juan
[1
]
Zhang, Wei
[2
]
Yang, Jie
[1
]
Gui, Guan
[1
]
机构:
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Automatic modulation classification;
multiple-input multiple-output (MIMO);
deep learning (DL);
convolutional neural network (CNN);
cooperative decision;
NEURAL-NETWORK;
INTELLIGENT;
RECOGNITION;
D O I:
10.1109/TVT.2020.2976942
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Automatic modulation classification (AMC) is one of the most essential algorithms to identify the modulation types for the non-cooperative communication systems. Recently, it has been demonstrated that deep learning (DL)-based AMC method effectively works in the single-input single-output (SISO) systems, but DL-based AMC method is scarcely explored in the multiple-input multiple-output (MIMO) systems. In this correspondence, we propose a convolutional neural network (CNN)-based cooperative AMC (Co-AMC) method for the MIMO systems, where the receiver, equipped with multiple antennas, cooperatively recognizes the modulation types. Specifically, each received antenna gives their recognition sub-results via the CNN, respectively. Then, the decision maker identifies the modulation types, based on these sub-results and cooperative decision rules, such as direct voting (DV), weighty voting (WV), direct averaging (DA) and weighty averaging (WA). The simulation results demonstrate that the Co-AMC method, based on the CNN and WA, has the highest correct classification probability in the four cooperative decision rules. In addition, the CNN-based Co-AMC method also performs better than the high order cumulants (HOC)-based traditionalAMCmethods, which shows the effective feature extraction and powerful classification capabilities of the CNN.
引用
收藏
页码:4575 / 4579
页数:5
相关论文