A fast algorithm for bidimensional EMD

被引:215
作者
Damerval, C [1 ]
Meignen, S [1 ]
Perrier, V [1 ]
机构
[1] Univ Grenoble, LMC, IMAG Lab, F-38000 Grenoble, France
关键词
Delaunay triangulation; empirical mode decomposition (EMD);
D O I
10.1109/LSP.2005.855548
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we describe a new method for bidimensional empirical mode decomposition (EMD). This decomposition is based on Delaunay triangulation and on piecewise cubic polynomial interpolation. Particular attention is devoted to boundary conditions that are crucial for the feasibility of the bidimensional EMD. The study of the behavior of the decomposition on a different kind of image shows its efficiency in terms of computational cost, and the decomposition of Gaussian white noises leads to bidimensional selective filter banks.
引用
收藏
页码:701 / 704
页数:4
相关论文
共 11 条
  • [1] [Anonymous], 1986, FINITE ELEM STRUCT A
  • [3] Empirical mode decomposition as a filter bank
    Flandrin, P
    Rilling, G
    Gonçalvés, P
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 112 - 114
  • [4] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [5] 2-D empirical mode decompositions - in the spirit of image compression
    Linderhed, A
    [J]. WAVELET AND INDEPENDENT COMPONENET ANALYSIS APPLICATIONS IX, 2002, 4738 : 1 - 8
  • [6] Linderhed A., 2004, ADAPTIVE IMAGE COMPR
  • [7] Boundary processing of bidimensional EMD using texture synthesis
    Liu, ZX
    Peng, SL
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (01) : 33 - 36
  • [8] Image analysis by bidimensional empirical mode decomposition
    Nunes, JC
    Bouaoune, Y
    Delechelle, E
    Niang, O
    Bunel, P
    [J]. IMAGE AND VISION COMPUTING, 2003, 21 (12) : 1019 - 1026
  • [9] NUNES JC, 2003, THESIS U PARIS 12 PA
  • [10] RILLING G, 2004, P EUSIPCO WIEN AUSTR