Experimental Quantum Simulation of Entanglement in Many-Body Systems

被引:33
作者
Zhang, Jingfu [1 ,2 ]
Wei, Tzu-Chieh [1 ,2 ,4 ]
Laflamme, Raymond [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada
[4] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PHASE-TRANSITIONS; COMPUTATION;
D O I
10.1103/PhysRevLett.107.010501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudoentanglement. The observed pseudoentanglement for a small-size system already displays a singularity, a signature which is qualitatively similar to that in the thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Quantum many-body physics from a gravitational lens [J].
Liu, Hong ;
Sonner, Julian .
NATURE REVIEWS PHYSICS, 2020, 2 (11) :615-633
[22]   Theory of Robust Quantum Many-Body Scars in Long-Range Interacting Systems [J].
Lerose, Alessio ;
Parolini, Tommaso ;
Fazio, Rosario ;
Abanin, Dmitry A. ;
Pappalardi, Silvia .
PHYSICAL REVIEW X, 2025, 15 (01)
[23]   Certificates of quantum many-body properties assisted by machine learning [J].
Requena, Borja ;
Munoz-Gil, Gorka ;
Lewenstein, Maciej ;
Dunjko, Vedran ;
Tura, Jordi .
PHYSICAL REVIEW RESEARCH, 2023, 5 (01)
[24]   Pauli spectrum and nonstabilizerness of typical quantum many-body states [J].
Turkeshi, Xhek ;
Dymarsky, Anatoly ;
Sierant, Piotr .
PHYSICAL REVIEW B, 2025, 111 (05)
[25]   A monomial matrix formalism to describe quantum many-body states [J].
Van den Nest, Maarten .
NEW JOURNAL OF PHYSICS, 2011, 13
[26]   Provably efficient machine learning for quantum many-body problems [J].
Huang, Hsin-Yuan ;
Kueng, Richard ;
Torlai, Giacomo ;
Albert, Victor V. ;
Preskill, John .
SCIENCE, 2022, 377 (6613) :1397-+
[27]   Exploring many-body interactions through quantum Fisher information [J].
Cieslinski, Pawel ;
Kurzynski, Pawel ;
Sowinski, Tomasz ;
Klobus, Waldemar ;
Laskowski, Wieslaw .
PHYSICAL REVIEW A, 2024, 110 (01)
[28]   Emergence of stationary many-body entanglement in driven-dissipative Rydberg lattice gases [J].
Lee, Sun Kyung ;
Cho, Jaeyoon ;
Choi, K. S. .
NEW JOURNAL OF PHYSICS, 2015, 17
[29]   Continuous Phase Transition without Gap Closing in Non-Hermitian Quantum Many-Body Systems [J].
Matsumoto, Norifumi ;
Kawabata, Kohei ;
Ashida, Yuto ;
Furukawa, Shunsuke ;
Ueda, Masahito .
PHYSICAL REVIEW LETTERS, 2020, 125 (26)
[30]   Classical and Quantum Signatures of Quantum Phase Transitions in a (Pseudo) Relativistic Many-Body System [J].
Nitsch, Maximilian ;
Geiger, Benjamin ;
Richter, Klaus ;
Urbina, Juan-Diego .
CONDENSED MATTER, 2020, 5 (02)