Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges

被引:214
作者
Jiang, Shaohua [1 ,2 ]
Uch, Bianca [1 ]
Agarwal, Seema [1 ]
Greiner, Andreas [1 ]
机构
[1] Univ Bayreuth, Bavarian Polymer Inst, Macromol Chem, Univ Str 30, D-95440 Bayreuth, Germany
[2] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Jiangsu, Peoples R China
关键词
polyimide; electrospinning sponge; thermal resistance; self-reinforced; CELLULAR AEROGELS; POLYMER SPONGES; CONDUCTIVITY; SUPERELASTICITY; PERFORMANCE; NANOFIBERS; SCAFFOLD;
D O I
10.1021/acsami.7b11045
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tunable density, thermally and mechanically stable, elastic, and thermally insulating sponges are required for demanding applications. Hierarchically structured sponges with bimodal interconnected pores, porosity more than 99%, and tunable densities (between 7.6 and 10.1 mg/cm(3)) are reported using polyimide (PI) as high temperature stable polymer. The sponges are made by freeze-drying a dispersion of short PI fibers and precursor polymer, poly(amic acid) (PAA). The concept of "self-gluing" the fibrous network skeleton of PI during sponge formation was applied to achieve mechanical stability without sacrificing the thermal properties. The sponges showed initial degradation above 400 and 500 degrees C in air and nitrogen, respectively. They have low thermal conductivity of 0.026 W/mK and thermal diffusivity of 1.009 mm(2)/s for a density of 10.1 mg/cm(3). The sponges are compressible for at least 10 000 cycles and good thermal insulators even at high compressions. These fibrous PI sponges are promising candidates for potential applications in thermal insulation, lightweight construction, high-temperature filtration, sensors, and catalyst carrier for high-temperature reactions.
引用
收藏
页码:32308 / 32315
页数:8
相关论文
共 42 条
[31]   Biomimetic superelastic graphene-based cellular monoliths [J].
Qiu, Ling ;
Liu, Jeffery Z. ;
Chang, Shery L. Y. ;
Wu, Yanzhe ;
Li, Dan .
NATURE COMMUNICATIONS, 2012, 3
[32]   Ultralight Metallic Microlattices [J].
Schaedler, T. A. ;
Jacobsen, A. J. ;
Torrents, A. ;
Sorensen, A. E. ;
Lian, J. ;
Greer, J. R. ;
Valdevit, L. ;
Carter, W. B. .
SCIENCE, 2011, 334 (6058) :962-965
[33]   Ultralight Biomass-Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressure-Sensitivity [J].
Si, Yang ;
Wang, Xueqin ;
Yan, Chengcheng ;
Yang, Liu ;
Yu, Jianyong ;
Ding, Bin .
ADVANCED MATERIALS, 2016, 28 (43) :9512-+
[34]   Superelastic and Superhydrophobic Nanofiber-Assembled Cellular Aerogels for Effective Separation of Oil/Water Emulsions [J].
Si, Yang ;
Fu, Qiuxia ;
Wang, Xueqin ;
Zhu, Jie ;
Yu, Jianyong ;
Sun, Gang ;
Ding, Bin .
ACS NANO, 2015, 9 (04) :3791-3799
[35]   Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality [J].
Si, Yang ;
Yu, Jianyong ;
Tang, Xiaomin ;
Ge, Jianlong ;
Ding, Bin .
NATURE COMMUNICATIONS, 2014, 5
[36]   Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels [J].
Viggiano, Rocco P. ;
Williams, Jarrod C. ;
Schiraldi, David A. ;
Meador, Mary Ann B. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (09) :8287-8296
[37]   Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges [J].
Wang, Haolun ;
Zhang, Xuan ;
Wang, Ning ;
Li, Yan ;
Feng, Xue ;
Huang, Ya ;
Zhao, Chunsong ;
Liu, Zhenglian ;
Fang, Minghao ;
Ou, Gang ;
Gao, Huajian ;
Li, Xiaoyan ;
Wu, Hui .
SCIENCE ADVANCES, 2017, 3 (06)
[38]   Thermal conductivity of polyurethane foams [J].
Wu, JW ;
Sung, WF ;
Chu, HS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (12) :2211-2217
[39]   Electrospun Polycaprolactone 3D Nanofibrous Scaffold with Interconnected and Hierarchically Structured Pores for Bone Tissue Engineering [J].
Xu, Tao ;
Miszuk, Jacob M. ;
Zhao, Yong ;
Sun, Hongli ;
Fong, Hao .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (15) :2238-2246
[40]   Experimental study of the thermal conductivity of polyurethane foams [J].
Zhang, Hu ;
Fang, Wen-Zhen ;
Li, Yue-Ming ;
Tao, Wen-Quan .
APPLIED THERMAL ENGINEERING, 2017, 115 :528-538