Prime two-dimensional orders and perpendicular total orders

被引:9
作者
Zaguia, I [1 ]
机构
[1] Univ Lyon 1, Lab Math Discretes, F-69622 Villeurbanne, France
关键词
D O I
10.1006/eujc.1998.0214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting with a correspondence between prime two-dimensional orders and pairs of perpendicular total orders we put in perspective several asymptotic results, we deduce an estimate of the number of prime two-dimensional orders (labelled and unlabelled as well). Using Poisson approximation, we give a new proof of the fact that the proportion of total orders perpendicular to a given total order is asymptotically e(-2) = 0.1353 .... (C) 1998 Academic Press.
引用
收藏
页码:639 / 649
页数:11
相关论文
共 11 条
[1]  
Barbour AD, 1992, Poisson approximation
[2]   COUNTING 2-DIMENSIONAL POSETS [J].
BAYOUMI, BI ;
ELZAHAR, MH ;
KHAMIS, SM .
DISCRETE MATHEMATICS, 1994, 131 (1-3) :29-37
[3]   ON RECURSIONS CONNECTED WITH SYMMETRIC GROUPS I [J].
CHOWLA, S ;
HERSTEIN, IN ;
MOORE, WK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (03) :328-334
[4]  
DEMETROVICS J, 1990, PROCEEDINGS OF THE TWENTIETH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, P248, DOI 10.1109/ISMVL.1990.122629
[5]   Partially ordered sets [J].
Dushnik, B ;
Miller, EW .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :600-610
[6]  
ELZAHAR M, 1988, ORDER, V5, P289
[7]  
ELZAHAR MH, 1989, ALGORITHMS ORDER, P327
[8]  
Feller W., 1968, INTRO PROBABILITY TH
[9]   THE NUMBER OF ORTHOGONAL PERMUTATIONS [J].
NOZAKI, A ;
MIYAKAWA, M ;
POGOSYAN, G ;
ROSENBERG, IG .
EUROPEAN JOURNAL OF COMBINATORICS, 1995, 16 (01) :71-85
[10]   RANDOM ORDERS OF DIMENSION-2 [J].
WINKLER, P .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 7 (04) :329-339