Search on a hypercubic lattice using a quantum random walk. II. d = 2

被引:23
作者
Patel, Apoorva [1 ,2 ]
Raghunathan, K. S. [1 ]
Rahaman, Md. Aminoor [2 ]
机构
[1] Indian Inst Sci, Ctr High Energy Phys, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Supercomp Educ & Res Ctr, Bangalore 560012, Karnataka, India
关键词
All Open Access; Green;
D O I
10.1103/PhysRevA.82.032331
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d = 2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article [A. Patel and M. A. Rahaman, Phys. Rev. A 82, 032330 (2010)] provides an O(root N ln N) algorithm, which is not optimal. The scaling behavior can be improved to O(root N ln N) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi [Phys. Rev. A 78, 012310 (2008)]. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
引用
收藏
页数:5
相关论文
共 14 条
[1]  
ABAL G, MATH STRUCT IN PRESS
[2]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[3]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[4]  
Brassard G., 2002, Quantum Computation and Quantum Information: A Millennium, V305, P53, DOI [DOI 10.1090/CONM/305/05215, 10.1090/conm/305/05215]
[5]   Spatial search and the Dirac equation [J].
Childs, AM ;
Goldstone, J .
PHYSICAL REVIEW A, 2004, 70 (04) :042312-1
[6]  
Grover L. K., 1996, P 28 ANN ACM S THEOR, P212, DOI [10.1145/237814.237866, DOI 10.1145/237814.237866]
[7]   From Schrodinger's equation to the quantum search algorithm [J].
Grover, LK .
PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (2-3) :333-348
[8]   Quantum random walks: an introductory overview [J].
Kempe, J .
CONTEMPORARY PHYSICS, 2003, 44 (04) :307-327
[9]  
PATEL A, 2006, P WORKSH QUANT INF C, P41
[10]   Search on a hypercubic lattice using a quantum random walk. I. d > 2 [J].
Patel, Apoorva ;
Rahaman, Md. Aminoor .
PHYSICAL REVIEW A, 2010, 82 (03)