Notes on the zero-divisor graph and annihilating-ideal graph of a reduced ring

被引:0
作者
Badie, Mehdi [1 ]
机构
[1] Jundi Shapur Univ Technol, Dept Math, Dezful, Iran
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2021年 / 29卷 / 02期
关键词
Zero-divisor graph; Annihilating-ideal graph; Fixed-place ideal; Ring of real-valued continuous; Zariski-topology;
D O I
10.2478/auom-2021-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We translate some graph properties of AG(R) and Gamma(R) to some topological properties of Zariski topology. We prove that the facts "(1) The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not have any isolated point. (3) Rad(AG(R)) = 3. (4) Rad(Gamma(R)) = 3. (5) Gamma(R) is triangulated (6) AG(R) is triangulated." are equivalent. Also, we show that if the zero ideal of a ring R is a fixed-place ideal, then dt(t)(AG(R)) = vertical bar B(R)vertical bar and also if in addition vertical bar Min(R)vertical bar > 2, then dt(AG(R)) = vertical bar B(R)vertical bar. Finally, it is shown that dt(AG(R)) is finite if and only if dt(t)(AG(R)) is finite if and only if Min(R) is finite.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 31 条
[1]   The Classification of the Annihilating-Ideal Graphs of Commutative Rings [J].
Aalipour, G. ;
Akbar, S. ;
Behboodi, M. ;
Nikandish, R. ;
Nikmehr, M. J. ;
Shaveisi, F. .
ALGEBRA COLLOQUIUM, 2014, 21 (02) :249-256
[2]   On the coloring of the annihilating-ideal graph of a commutative ring [J].
Aalipour, G. ;
Akbari, S. ;
Nikandish, R. ;
Nikmehr, M. J. ;
Shaveisi, F. .
DISCRETE MATHEMATICS, 2012, 312 (17) :2620-2626
[3]   A graph associated to a lattice [J].
Afkhami M. ;
Barati Z. ;
Khashyarmanesh K. .
Ricerche di Matematica, 2014, 63 (1) :67-78
[4]   On the zero-divisor graph of a commutative ring [J].
Akbari, S ;
Mohammadian, A .
JOURNAL OF ALGEBRA, 2004, 274 (02) :847-855
[5]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[6]   On Bourbaki associated prime divisors of an ideal [J].
Aliabad, A. R. ;
Badie, M. .
QUAESTIONES MATHEMATICAE, 2019, 42 (04) :479-500
[7]   ON SZ°-IDEALS IN POLYNOMIAL RINGS [J].
Aliabad, A. R. ;
Mohamadian, R. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (02) :701-717
[8]   An extension of z-ideals and z°-ideals [J].
Aliabad, Ali R. ;
Badie, Mehdi ;
Nazari, Sajad .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (01) :254-272
[9]  
Aliabad AR, 2013, COMMENT MATH UNIV CA, V54, P53
[10]   RINGS WHOSE ANNIHILATING-IDEAL GRAPHS HAVE POSITIVE GENUS [J].
Aliniaeifard, F. ;
Behboodi, M. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (03)