GLOBAL IN TIME SOLUTION AND TIME-PERIODICITY FOR A SMECTIC-A LIQUID CRYSTAL MODEL

被引:17
作者
Climent-Ezquerra, Blanca [1 ]
Guillen-Gonzalez, Francisco [1 ]
机构
[1] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
关键词
Smectic-A liquid crystal; coupled non-linear parabolic system; Navier-Stokes equations; global up to infinity time solutions; time periodic solutions; REGULARITY; EXISTENCE;
D O I
10.3934/cpaa.2010.9.1473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper some results are obtained for a smectic-A liquid crystal model with time-dependent boundary Dirichlet data for the so-called layer variable phi (the level sets of phi describe the layer structure of the smectic-A liquid crystal). First, the initial-boundary problem for arbitrary initial data is considered, obtaining the existence of weak solutions which are bounded up to infinity time. Second, the existence of time-periodic weak solutions is proved. Afterwards, the problem of the global in time regularity is attacked, obtaining the existence and uniqueness of regular solutions ( up to infinity time) for both problems, i.e. the initial-valued problem and the time-periodic one, but assuming a dominant viscosity coefficient in the linear part of the diffusion tensor.
引用
收藏
页码:1473 / 1493
页数:21
相关论文
共 10 条
[1]   Reproductivity for a nematic liquid crystal model [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Rojas-Medar, Marko .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (06) :984-998
[2]   Regularity and time-periodicity for a nematic liquid crystal model [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Jesus Moreno-Iraberte, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :539-549
[3]   Global solution of nematic liquid crystals models [J].
Guillén-González, F ;
Rojas-Medar, M .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (12) :1085-1090
[4]  
KINDERLEHRER D, P S EL JL ER 1996 AS
[5]  
Lai M.-J., 2004, APPL ANAL, V83, P541
[6]   Existence of solutions for the Ericksen-Leslie system [J].
Lin, FH ;
Liu, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (02) :135-156
[7]   NONPARABOLIC DISSIPATIVE SYSTEMS MODELING THE FLOW OF LIQUID-CRYSTALS [J].
LIN, FH ;
LIU, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (05) :501-537
[8]  
LIONS P. L., 1996, MATH TOPICS FLUIDS M
[9]   Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity [J].
Liu, C .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) :591-608
[10]  
1997, ARCH RATIONAL MECH A, V137, P159