Performance advantage of Schottky source/drain in ultrathin-body silicon-on-insulator and dual-gate CMOS

被引:43
作者
Connelly, D [1 ]
Faulkner, C [1 ]
Grupp, DE [1 ]
机构
[1] Acorn Technol, Palo Alto, CA 94061 USA
关键词
CMOSFET circuits; MOS devices; Schottky barriers; semiconductor device modeling; semiconductor-metal interfaces; silicon; simulation;
D O I
10.1109/TED.2003.813229
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Here, for the first time, advanced simulation models are used to investigate the performance advantage of Schottky source/drain ultrathin-silicon technologies at a 25-nm gate length target. Schottky and doped source/drain MOSFETs were optimized and compared using a novel benchmark. Mixed-mode simulations of optimized devices in a two-stage NAND chain show an approximate 45% speed advantage of Schottky source/drain for one set of parameter choices. Contact requirements for Schottky source/drain, and for doped source/drain relative to ITRS targets through 2016, are discussed.
引用
收藏
页码:1340 / 1345
页数:6
相关论文
共 27 条
  • [1] QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR
    ANCONA, MG
    IAFRATE, GJ
    [J]. PHYSICAL REVIEW B, 1989, 39 (13): : 9536 - 9540
  • [2] Relating expectations to automatically recovered design patterns
    Asencio, A
    Cardman, S
    Harris, D
    Laderman, E
    [J]. NINTH WORKING CONFERENCE ON REVERSE ENGINEERING, PROCEEDINGS, 2002, : 87 - 96
  • [3] MOSFET modeling into the ballistic regime
    Bude, JD
    [J]. 2000 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2000, : 23 - 26
  • [4] ELECTRON AND HOLE DRIFT VELOCITY-MEASUREMENTS IN SILICON AND THEIR EMPIRICAL RELATION TO ELECTRIC-FIELD AND TEMPERATURE
    CANALI, C
    MAJNI, G
    MINDER, R
    OTTAVIANI, G
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1975, 22 (11) : 1045 - 1047
  • [5] CARRIER MOBILITIES IN SILICON EMPIRICALLY RELATED TO DOPING AND FIELD
    CAUGHEY, DM
    THOMAS, RE
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1967, 55 (12): : 2192 - +
  • [6] Connelly D., 2002, Device Research Conference (Cat. No.02TH8606), P77, DOI 10.1109/DRC.2002.1029522
  • [7] Macroscopic simulation of quantum mechanical effects in 2-D MOS devices via the density gradient method
    Connelly, D
    Yu, ZP
    Yergeau, D
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (04) : 619 - 626
  • [8] Improved device technology evaluation and optimization
    Connelly, D
    Foisy, M
    [J]. 2000 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2000, : 155 - 158
  • [9] CONNELLY D, 2001, P 2001 IEEE SISPAD, P90
  • [10] CONNELLY D, 2003, IN PRESS IEEE ELECT