Dynamic Crossover in Fluids: From Hard Spheres to Molecules

被引:38
作者
Bell, Ian H. [5 ]
Delage-Santacreu, Stephanie [1 ]
Hoang, Hai [2 ,3 ]
Galliero, Guillaume [4 ]
机构
[1] Univ Pau & Pays Adour, Lab Math & Leurs Applicat Pau, IPRA, CNRS,UMR 5142,e2s,UPPA, F-64000 Pau, France
[2] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City 700000, Vietnam
[3] Duy Tan Univ, Fac Nat Sci, Da Nang 550000, Vietnam
[4] Univ Pau & Pays Adour, E2s, UPPA, TOTAL,CNRS,LFCR,UMR 5150,Lab Flu Ides Complexes &, F-64000 Pau, France
[5] Natl Inst Stand & Technol, Appl Chem & Mat Div, Boulder, CO 80305 USA
关键词
EQUATION-OF-STATE; TRANSPORT-COEFFICIENTS; VISCOSITY; ENTROPY; PRESSURES; BEHAVIOR; ARGON; TEMPERATURES; NITROGEN; REGION;
D O I
10.1021/acs.jpclett.1c01594
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a simple and generic definition of a demarcation reconciling structural and dynamic frameworks when combined with the entropy scaling framework. This crossover line between gas- and liquid-like behaviors is defined as the curve for which an individual property, the contribution to viscosity due to molecules' translation, is exactly equal to a collective property, the contribution to viscosity due to molecular interactions. Such a definition is shown to be consistent with the one based on the minima of the kinematic viscosity. For the hard sphere, this is shown to be an exact solution. For Lennard-Jones spheres and dimers and for some simple real fluids, this relation holds very well. This crossover line passes nearby the critical point, and for all studied fluids, it is well captured by the critical excess entropy curve for atomic fluids, emphasizing the link between transport properties and local structure.
引用
收藏
页码:6411 / 6417
页数:7
相关论文
共 70 条
[1]  
Allen M.P., 2017, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]  
[Anonymous], 1869, PHILOS T R SOC LONDO, DOI DOI 10.1098/RSTL.1869.0021
[3]  
[Anonymous], 1987, Introduction to Phase Transitions, DOI DOI 10.1002/QUA.560350412
[4]   Pressure-energy correlations in liquids. I. Results from computer simulations [J].
Bailey, Nicholas P. ;
Pedersen, Ulf R. ;
Gnan, Nicoletta ;
Schroder, Thomas B. ;
Dyre, Jeppe C. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (18)
[5]   Pressure-energy correlations in liquids. II. Analysis and consequences [J].
Bailey, Nicholas P. ;
Pedersen, Ulf R. ;
Gnan, Nicoletta ;
Schroder, Thomas B. ;
Dyre, Jeppe C. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (18)
[6]   Between supercritical liquids and gases - Reconciling dynamic and thermodynamic state transitions [J].
Banuti, D. T. ;
Raju, M. ;
Ihme, M. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2020, 165
[7]   3-PARTICLE CONTRIBUTION TO THE CONFIGURATIONAL ENTROPY OF SIMPLE FLUIDS [J].
BARANYAI, A ;
EVANS, DJ .
PHYSICAL REVIEW A, 1990, 42 (02) :849-857
[8]   Excess-entropy scaling in supercooled binary mixtures [J].
Bell, Ian H. ;
Dyre, Jeppe C. ;
Ingebrigtsen, Trond S. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Entropy Scaling of Viscosity-I: A Case Study of Propane [J].
Bell, Ian H. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2020, 65 (06) :3203-3215
[10]   An entropy scaling demarcation of gas- and liquid-like fluid behaviors [J].
Bell, Ian H. ;
Galliero, Guillaume ;
Delage-Santacreu, Stephanie ;
Costigliola, Lorenzo .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (19)