Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms

被引:5
作者
Hendrickx, Jan M. H. [1 ]
Kleissl, Jan [1 ]
Velez, Jesus D. Gomez [1 ]
Hong, Sung-ho [1 ]
Duque, Jose R. Fabrega [1 ]
Vega, David [1 ]
Ramirez, Hernan A. Moreno [1 ]
Ogden, Fred L. [1 ]
机构
[1] New Mexico Inst Min & Technol, Socorro, NM 87801 USA
来源
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII | 2007年 / 6565卷
关键词
scintillometer; sensible heat flux; SEBAL; soil moisture; New Mexico; Panama; Colombia; remote sensing;
D O I
10.1117/12.718124
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 in (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 in long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.
引用
收藏
页数:16
相关论文
共 98 条
[1]  
Ahmad M.-u.-D., 2003, Irrigation and Drainage Systems, V17, P141, DOI DOI 10.1023/A:1025101217521
[2]   Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study [J].
Allen, RG .
JOURNAL OF HYDROLOGY, 2000, 229 (1-2) :27-41
[3]  
ALLEN RG, 2005, BENEFITS TYING SATEL, P127
[4]  
ALLEN RG, 1999, INITIAL REPORT CLOSU, P12
[5]  
ALLEN RG, 2006, IN PRESS J IRRIGATIO
[6]   A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing [J].
Anderson, MC ;
Norman, JM ;
Diak, GR ;
Kustas, WP ;
Mecikalski, JR .
REMOTE SENSING OF ENVIRONMENT, 1997, 60 (02) :195-216
[7]  
Andreas E. L., 1989, Journal of Atmospheric and Oceanic Technology, V6, P280, DOI 10.1175/1520-0426(1989)006<0280:TWMOMP>2.0.CO
[8]  
2
[9]  
ANDREAS EL, 1990, SPIE MILESTONE SERIE, V25, P693
[10]  
[Anonymous], 2006, INT J RIVER BASIN MA, DOI DOI 10.1080/15715124.2007.9635305