Deep Query Optimization

被引:4
作者
Vu, Tin [1 ]
机构
[1] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
来源
SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA | 2019年
基金
美国国家科学基金会;
关键词
Query Optimization; Data Indexing; Deep Learning;
D O I
10.1145/3299869.3300104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent decades, we observed the rapid growth of several big data platforms. In this context, the complexity of distributed systems make it much harder to develop rigorous cost models for query optimization problems. This paper aims to address two problems of the query optimization process: cost estimation and index selection. The cost estimation problem predicts the best execution plan by measuring the cost of alternative query plans. The index selection problem determines the most suitable indexing method with a given dataset. Both problems require the development of a complex function that measures the cost or suitability of alternatives to a specific dataset. Therefore, we employ deep learning to solve those problems due to its capability of learning complicated models. We first addressed a simple form of cost estimation problem: selectivity estimation. Our preliminary results show that our deep learning models work efficiently with the accuracy of selectivity estimation up to 97%.
引用
收藏
页码:1856 / 1858
页数:3
相关论文
共 50 条
  • [31] New Algorithms for Lexical Query Optimization
    Mendkovich, Nikita
    Kuznetsov, Sergey
    PROCEEDINGS OF THE ITI 2009 31ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2009, : 187 - 192
  • [32] Semantic query optimization in the presence of types
    Meier, Michael
    Schmidt, Michael
    Wei, Fang
    Lausen, Georg
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2013, 79 (06) : 937 - 957
  • [33] Semantic Query Optimization in the Presence of Types
    Meier, Michael
    Schmidt, Michael
    Wei, Fang
    Lausen, Georg
    PODS 2010: PROCEEDINGS OF THE TWENTY-NINTH ACM SIGMOD-SIGACT-SIGART SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2010, : 111 - 122
  • [34] Unified Query Optimization in the Fabric DataWarehouse
    Bruno, Nicolas
    Galindo-Legaria, Cesar
    Joshi, Milind
    Vargas, Esteban Calvo
    Mahapatra, Kabita
    Ravindran, Sharon
    Chen, Guoheng
    Juarez, Ernesto Cervantes
    Sezgin, Beysim
    COMPANION OF THE 2024 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD-COMPANION 2024, 2024, : 18 - 30
  • [35] QUERY OPTIMIZATION FOR NONTRADITIONAL DATABASE APPLICATIONS
    SELLIS, TK
    SHAPIRO, L
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1991, 17 (01) : 77 - 86
  • [36] A PERF solution for distributed query optimization
    Haraty, RA
    Fany, R
    COMPUTERS AND THEIR APPLICATIONS, 2000, : 150 - 153
  • [37] Accomplishing deterministic XML query optimization
    Che, DR
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2005, 20 (03) : 357 - 366
  • [38] Data dependencies for query optimization: a survey
    Jan Kossmann
    Thorsten Papenbrock
    Felix Naumann
    The VLDB Journal, 2022, 31 : 1 - 22
  • [39] Accomplishing Deterministic XML Query Optimization
    Dun-Ren Che
    Journal of Computer Science and Technology, 2005, 20 : 357 - 366
  • [40] Depth estimation for ranking query optimization
    Schnaitter, Karl
    Spiegel, Joshua
    Polyzotis, Neoklis
    VLDB JOURNAL, 2009, 18 (02) : 521 - 542