Ballistic deployment from quasi-satellite orbits around Phobos under realistic dynamical and surface environment constraints

被引:19
作者
Celik, Onur [1 ]
Baresi, Nicola [2 ]
Ballouz, Ronald-Louis [3 ]
Ogawa, Kazunori [4 ]
Wada, Koji [5 ]
Kawakatsu, Yasuhiro [2 ]
机构
[1] Grad Univ Adv Studies SOKENDAI, Sagamihara, Kanagawa 2525210, Japan
[2] Inst Space & Astronaut Sci ISAS JAXA, Sagamihara, Kanagawa 2525210, Japan
[3] Univ Arizona, Tucson, AZ 85721 USA
[4] Kobe Univ, Kobe, Hyogo 6570013, Japan
[5] Chiba Inst Technol, Chiba 2750016, Japan
关键词
Phobos; MMX; Ballistic landing; Escape speed; Coefficient of restitution; MISSION; OPPORTUNITIES; DESIGN; MOTION; SYSTEM; IMPACT; DEIMOS;
D O I
10.1016/j.pss.2019.06.010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Landing on Phobos and bringing samples from its surface would settle the debate on the origin of the Martian moons and support future manned exploration to Mars. To fulfill these scientific objectives, JAXA is planning to send a sample return probe to Phobos by the first half of the next decade, named the Martian Moons eXploration (MMX) mission. In order to explore scientifically interesting regions of Phobos, as well as to support the sampling operations of MMX, a number of Deployable CAMera 5 payloads are proposed to be deployed from quasi-satellite orbits (QSOs) around the Martian moon. This paper explores the feasibility of ballistic deployments from QSOs under realistic dynamical environment and surface constraints in order to guarantee surface settlement within the lifespan of DCAM5. First, we analyze the dynamical environment and escape speeds from Phobos by means of the Circular Hill Problem. Then, the surface coefficient of restitution is estimated by generic impacts onto Phobos regolith via discrete element method simulations. By combining these two analyses, maximum allowable impact velocities for surface settling are calculated and applied to downselect the number of feasible ballistic landings from QSOs. It is found that access to Phobos surface is possible especially along the leading and trailing sides of the Martian moon and in agreement with the engineering requirements of DCAM5.
引用
收藏
页数:11
相关论文
共 38 条
[1]   The landing(s) of Philae and inferences about comet surface mechanical properties [J].
Biele, Jens ;
Ulamec, Stephan ;
Maibaum, Michael ;
Roll, Reinhard ;
Witte, Lars ;
Jurado, Eric ;
Munoz, Pablo ;
Arnold, Walter ;
Auster, Hans-Ulrich ;
Casas, Carlos ;
Faber, Claudia ;
Fantinati, Cinzia ;
Finke, Felix ;
Fischer, Hans-Herbert ;
Geurts, Koen ;
Guettler, Carsten ;
Heinisch, Philip ;
Herique, Alain ;
Hviid, Stubbe ;
Kargl, Guenter ;
Knapmeyer, Martin ;
Knollenberg, Joerg ;
Kofman, Wlodek ;
Koemle, Norbert ;
Kuehrt, Ekkehard ;
Lommatsch, Valentina ;
Mottola, Stefano ;
de Santayana, Ramon Pardo ;
Remetean, Emile ;
Scholten, Frank ;
Seidensticker, Klaus J. ;
Sierks, Holger ;
Spohn, Tilman .
SCIENCE, 2015, 349 (6247)
[2]  
Canalias E., 2018, Space Flight Mechanics Meeting, P210009, DOI DOI 10.2514/6.2018-0716
[3]   A comparative reliability analysis of ballistic deployments on binary asteroids [J].
Celik, Onur ;
Sanchez, Joan Pau ;
Karatekin, Ozgur ;
Ritter, Birgit .
ACTA ASTRONAUTICA, 2019, 156 :308-316
[4]   Opportunities for Ballistic Soft Landing in Binary Asteroids [J].
Celik, Onur ;
Sanchez, Joan Pau .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (06) :1390-1402
[5]   Asteroid Impact & Deflection Assessment mission: Kinetic impactor [J].
Cheng, A. F. ;
Michel, R. ;
Jutzi, M. ;
Rivkin, A. S. ;
Stickle, A. ;
Barnouin, O. ;
Ernst, C. ;
Atchison, J. ;
Pravec, P. ;
Richardson, D. C. .
PLANETARY AND SPACE SCIENCE, 2016, 121 :27-35
[6]   THE UNUSUAL DYNAMICAL ENVIRONMENT OF PHOBOS AND DEIMOS [J].
DAVIS, DR ;
HOUSEN, KR ;
GREENBERG, R .
ICARUS, 1981, 47 (02) :220-233
[7]   LIFE NEAR THE ROCHE-LIMIT - BEHAVIOR OF EJECTA FROM SATELLITES CLOSE TO PLANETS [J].
DOBROVOLSKIS, AR ;
BURNS, JA .
ICARUS, 1980, 42 (03) :422-441
[8]   Ballistic landing design on binary asteroids: The AIM case study [J].
Ferrari, Fabio ;
Lavagna, Michele .
ADVANCES IN SPACE RESEARCH, 2018, 62 (08) :2245-2260
[9]  
Gaskell R.W., 2011, Gaskell Phobos Shape Model V1.0. V01-SA-VISA/VISB-5-PHOBOSSHAPEV1.0
[10]   Asteroid Observation and Landing Trajectories Using Invariant Manifolds [J].
Herrera-Sucarrat, E. ;
Palmer, P. L. ;
Roberts, R. M. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (03) :907-920