TEMPERED INFINITELY DIVISIBLE DISTRIBUTIONS AND PROCESSES

被引:22
作者
Bianchi, M. L. [1 ]
Rachev, S. T. [2 ,3 ,4 ]
Kim, Y. S. [2 ,3 ]
Fabozzi, F. J. [5 ]
机构
[1] Bank Italy, Specialized Intermediaries Supervis Dept, Rome, Italy
[2] Univ Karlsruhe, Dept Econometr Stat & Math Finance, Sch Econ & Business Engn, Karlsruhe, Germany
[3] KIT, Karlsruhe, Germany
[4] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[5] Yale Univ, Sch Management, New Haven, CT 06520 USA
关键词
stable distributions; tempered stable distributions; tempered infinitely divisible distributions;
D O I
10.1137/S0040585X97984632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we construct the new class of tempered infinitely divisible (TID) distributions. Taking into account the tempered stable distribution class, as introduced in the seminal work of Rosinski [Stochastic Process. Appl., 117 (2007), pp. 677-707], a modification of the tempering function allows one to obtain suitable properties. In particular, TID distributions may have exponential moments of any order and conserve all proper properties of the Rosinski setting. Furthermore, we prove that the modified tempered stable distribution is TID and give some further parametric examples.
引用
收藏
页码:2 / 26
页数:25
相关论文
共 16 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]  
[Anonymous], 1971, INTRO PROBABILITY TH
[3]  
BIANCHI ML, 2008, TEMPERED INFINITELY
[4]  
Gradshtein I S., 1965, Tables of Integrals, Series and Products
[5]  
HOUNDRE C, 2007, BERNOULLI, V13, P252
[6]  
Kallenberg O., 1997, PROBAB APPL
[7]  
Kim Y.S., 2009, Probability and Mathematica Statistics, V29, P91
[8]   Financial market models with Levy processes and time-varying volatility [J].
Kim, Young Shin ;
Rachev, Svetlozar T. ;
Bianchi, Michele Leonardo ;
Fabozzi, Frank J. .
JOURNAL OF BANKING & FINANCE, 2008, 32 (07) :1363-1378
[9]  
KIM YS, 2008, RISK ASSESSMENT DECI, P51
[10]  
Rosinski J, 2001, LEVY PROCESSES: THEORY AND APPLICATIONS, P401