Thermodynamics of quantum spacetime histories

被引:4
作者
Smolin, Lee [1 ,2 ,3 ]
机构
[1] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2J 2Y5, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON, Canada
[3] Univ Toronto, Dept Philosophy, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
BLACK-HOLE EVAPORATION; GRAVITY; SCHWARZSCHILD; MECHANICS; GEOMETRY; ENTROPY; TIME;
D O I
10.1103/PhysRevD.96.104042
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the simplicity constraints, which define the dynamics of spin foam models, imply, and are implied by, the first law of thermodynamics, when the latter is applied to causal diamonds in the quantum spacetime. This result reveals an intimate connection between the holographic nature of gravity, as reflected by the Bekenstein entropy, and the fact that general relativity and other gravitational theories can be understood as constrained topological field theories. To state and derive this correspondence we describe causal diamonds in the causal structure of spin foam histories and generalize arguments given for the near horizon region of black holes by Frodden, Gosh and Perez [Phys. Rev. D 87, 121503 (2013); Phys. Rev. D 89, 084069 (2014); Phys. Rev. Lett. 107, 241301 (2011); 108, 169901(E) (2012).] and Bianchi [arXiv: 1204.5122.]. This allows us to apply a recent argument of Jacobson [Phys. Rev. Lett. 116, 201101 (2016).] to show that if a spin foam history has a semiclassical limit described in terms of a smooth metric geometry, that geometry satisfies the Einstein equations. These results suggest also a proposal for a quantum equivalence principle.
引用
收藏
页数:18
相关论文
共 67 条
[1]   Principle of relative locality [J].
Amelino-Camelia, Giovanni ;
Freidel, Laurent ;
Kowalski-Glikman, Jerzy ;
Smolin, Lee .
PHYSICAL REVIEW D, 2011, 84 (08)
[2]  
[Anonymous], 2000, PHYS REV, V61
[3]  
[Anonymous], 2012, PHYS REV LETT, V108
[4]  
[Anonymous], 2011, POS QGQGS2011
[5]  
[Anonymous], 2014, CLASSICAL QUANTUM GR, V31
[6]  
[Anonymous], ARXIV14052933
[7]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[8]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[9]   Lorentzian spin foam amplitudes: graphical calculus and asymptotics [J].
Barrett, John W. ;
Dowdall, R. J. ;
Fairbairn, Winston J. ;
Hellmann, Frank ;
Pereira, Roberto .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (16)
[10]   Asymptotic analysis of the Engle-Pereira-Rovelli-Livine four-simplex amplitude [J].
Barrett, John W. ;
Dowdall, Richard J. ;
Fairbairn, Winston J. ;
Gomes, Henrique ;
Hellmann, Frank .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)