On the Nature of Field-Enhanced Water Dissociation in Bipolar Membranes

被引:32
作者
Bui, Justin C. [1 ,2 ]
Corpus, Kaitlin Rae M. [1 ,2 ]
Bell, Alexis T. [1 ,2 ]
Weber, Adam Z. [2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Liquid Sunlight Alliance, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
PROTON-TRANSFER; ELECTRIC-FIELD; TRANSPORT MECHANISMS; GRAPHENE OXIDE; CARBON-DIOXIDE; ION-TRANSPORT; ELECTROLYSIS; REDUCTION; CO; DIFFUSION;
D O I
10.1021/acs.jpcc.1c08276
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
optimize pH environments for electrochemical synthesis applications when employed in reverse bias. Unfortunately, the performance of BPMs in reverse bias has long been limited by the rate of water dissociation (WD) occurring at the interface of the BPM. Herein, we develop a continuum model of the BPM that agrees with experiment to understand and enhance WD catalyst performance by considering multiple kinetic pathways for WD in the BPM junction catalyst layer. The model reveals that WD catalysts with a more highly alkaline or acidic pH at the point of zero charge (pHPZC) exhibit accelerated WD kinetics because the more acidic or alkaline pHPZC catalysts possess greater surface charge, enhancing the local electric field and rate of WD. The model is then employed to explore the sensitivity of the BPM performance to various BPM physical parameters. Finally, the model is used to simulate the operation of bimetallic WD catalysts, demonstrating that an optimal bimetallic catalyst has an acidic pHPZC catalyst matched with the cation-exchange layer and an alkaline pHPZC catalyst matched with the anion-exchange layer. The study provides insight into the operation of BPM WD catalysts and gives direction toward the development of next-generation WD catalysts for optimal BPM performance under water-splitting and related conditions.
引用
收藏
页码:24974 / 24987
页数:14
相关论文
共 60 条
[1]  
[Anonymous], 2013, PHREEQC VERS 3 COMP
[2]   Insights and Challenges for Applying Bipolar Membranes in Advanced Electrochemical Energy Systems [J].
Blommaert, Marijn A. ;
Aili, David ;
Tufa, Ramato Ashu ;
Li, Qingfeng ;
Smith, Wilson A. ;
Vermaas, David A. .
ACS ENERGY LETTERS, 2021, 6 (07) :2539-2548
[3]   Reduced Ion Crossover in Bipolar Membrane Electrolysis via Increased Current Density, Molecular Size, and Valence [J].
Blommaert, Marijn A. ;
Verdonk, Joost A. H. ;
Blommaert, Hester C. B. ;
Smith, Wilson A. ;
Vermaas, David A. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5804-5812
[4]   Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes [J].
Bui, Justin C. ;
Digdaya, Ibadillah ;
Xiang, Chengxiang ;
Bell, Alexis T. ;
Weber, Adam Z. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) :52509-52526
[5]   Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons [J].
Chen, Chubai ;
Li, Yifan ;
Yu, Sunmoon ;
Louisia, Sheena ;
Jin, Jianbo ;
Li, Mufan ;
Ross, Michael B. ;
Yang, Peidong .
JOULE, 2020, 4 (08) :1688-1699
[6]  
Craig N., 2013, Electrochemical Behavior of Bipolar Membranes
[7]   DIELECTRIC CONSTANT FOR THE DIOXANE WATER SYSTEM FROM 20 TO 35-DEGREES [J].
CRITCHFIELD, FE ;
GIBSON, JA ;
HALL, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1953, 75 (08) :1991-1992
[8]   Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation [J].
Crothers, Andrew R. ;
Darling, Robert M. ;
Kusoglu, Ahmet ;
Radke, Clayton J. ;
Weber, Adam Z. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (01)
[9]   Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part I. Thermodynamic Model and Validation [J].
Crothers, Andrew R. ;
Darling, Robert M. ;
Kusoglu, Ahmet ;
Radke, Clayton J. ;
Weber, Adam Z. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (01)
[10]   Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts [J].
Danilovic, N. ;
Subbaraman, Ram ;
Strmcnik, D. ;
Chang, Kee-Chul ;
Paulikas, A. P. ;
Stamenkovic, V. R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (50) :12495-12498