Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays

被引:73
|
作者
Diao, Y. H. [1 ]
Liang, L. [1 ]
Zhao, Y. H. [1 ]
Wang, Z. Y. [1 ]
Bai, F. W. [2 ]
机构
[1] Beijing Univ Technol, Beijing Key Lab Green Built Environm & Efficient, 100 Pingleyuan, Beijing 100124, Peoples R China
[2] Chinese Acad Sci, Inst Elect Engn, Key Lab Solar Thermal Energy Photovolta Syst, Beijing 100190, Peoples R China
关键词
Latent heat thermal energy storage; Flat micro-heat pipe array; Longitudinal rectangular fins; Numerical simulation; PHASE-CHANGE MATERIALS; EFFICIENCY RATIO; POROUS CAVITY; FINNED-TUBE; ONE SHELL; SYSTEM; EXCHANGER; PARAFFIN; UNIT; NANOFLUID;
D O I
10.1016/j.apenergy.2018.10.024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of a new type of latent heat thermal energy storage (LHTS) device based on flat micro-heat pipe arrays (FMHPAs) with longitudinal rectangular fins is numerically studied by enthalpy-porosity technique based on finite volume method (FVM) in this research. The numerical model is verified correct. The temperature distribution and phase transition process in different directions of the interior of a thermal storage tank and the effects of fin height, spacing, and thickness on charging power and thermal storage capacity are also analyzed numerically. Results show that phase interface is presented in U type in the horizontal direction. In the vertical direction, the phase change material (PCM) among fins melts from up to down when the fin spacing is larger than 6 mm, and the opposite occurs when the fin spacing is less than 6 mm. The thermal storage capacity of the LHTS device is reduced drastically when the fin spacing is less than 4.14 mm. For fin height, the structure of multiple rows of FMHPAs with dwarf fins is recommended because it exhibits large power and exerts a small negative effect on thermal storage capacity. Fin thickness has a minimal effect on charging power and thermal storage capacity. The study results provide optimization design guidance for LHTS devices based on FMHPAs under various application backgrounds, such as solving the contradiction between energy supply and demand in solar thermal systems and the peak load shifting of electricity in heat pump systems.
引用
收藏
页码:894 / 905
页数:12
相关论文
共 50 条
  • [41] Comparison of Thermal Performance between Annular Fins and Longitudinal Fins in Latent Heat Storage Unit
    Yuxi Zhu
    Yan Qiu
    Journal of Thermal Science, 2023, 32 : 1227 - 1238
  • [42] Experimental study on the thermal performance and pressure drop of a solar air collector based on flat micro-heat pipe arrays
    Zhu, Ting-ting
    Diao, Yan-hua
    Zhao, Yao-hua
    Deng, Yue-chao
    ENERGY CONVERSION AND MANAGEMENT, 2015, 94 : 447 - 457
  • [43] Numerical simulation of thermal performance and thermal stress of latent heat storage system with various fins
    Xue, Xue
    Zhang, Ao
    Wu, Yajie
    Li, Huaan
    Wu, Fengyongkang
    Lv, Laiquan
    Zhou, Hao
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [44] Investigate on thermal performance and resistance characteristic of new solar air collector based on flat micro-heat pipe arrays
    Zhu, Tingting
    Diao, Yanhua
    Zhao, Yaohua
    Deng, Yuechao
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2015, 36 (04): : 963 - 970
  • [45] Numerical study on the thermal enhancement of horizontal latent heat storage units with hierarchical fins
    Huang, Yongping
    Yao, Feng
    Liu, Xiangdong
    RENEWABLE ENERGY, 2021, 180 : 383 - 397
  • [46] Experimental study on the heat transfer characteristics of a new type flat micro heat pipe heat exchanger with latent heat thermal energy storage
    Diao, Y. H.
    Wang, S.
    Li, C. Z.
    Zhao, Y. H.
    Zhu, T. T.
    EXPERIMENTAL HEAT TRANSFER, 2017, 30 (02) : 91 - 111
  • [47] Experimental study of the heat transfer characteristics of a new-type flat micro-heat pipe thermal storage unit
    Diao, Y. H.
    Wang, S.
    Zhao, Y. H.
    Zhu, T. T.
    Li, C. Z.
    Li, F. F.
    APPLIED THERMAL ENGINEERING, 2015, 89 : 871 - 882
  • [48] Capillary and thermal performance enhancement of rectangular grooved micro heat pipe with micro pillars
    Hamidnia, Mohammad
    Luo, Yi
    Li, Zhixin
    Wang, Xiaodong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 153 (153)
  • [49] Experimental Investigate for Optimization of Heat Pipe Performance in Latent Heat Thermal Energy Storage
    Ladekar, Chandrakishor L.
    Chaudhary, S. K.
    Khandare, S. S.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (08) : 8149 - 8157
  • [50] Numerical study of thermal enhancement in a micro-heat sink with ribbed pin-fin arrays
    Ziqiang He
    Yunfei Yan
    Shuai Feng
    Xiuquan Li
    Zhongqing Yang
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 2163 - 2177