Multi-Focus Image Fusion via Clustering PCA Based Joint Dictionary Learning

被引:32
作者
Yang, Yong [1 ]
Ding, Min [1 ]
Huang, Shuying [2 ]
Que, Yue [1 ]
Wan, Weiguo [3 ]
Yang, Mei [1 ]
Sun, Jun [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Software & Commun Engn, Nanchang 330032, Jiangxi, Peoples R China
[3] Chonbuk Natl Univ, Div Comp Sci & Engn, Jeonju 561756, South Korea
来源
IEEE ACCESS | 2017年 / 5卷
基金
中国国家自然科学基金;
关键词
Multi-focus image fusion; joint dictionary; principal component analysis; multi-scale morphology focus-measure; CONTOURLET TRANSFORM; PERFORMANCE; FRAMEWORK; WAVELET;
D O I
10.1109/ACCESS.2017.2741500
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel framework based on the non-subsampled contourlet transform (NSCT) and sparse representation (SR) to fuse the multi-focus images. In the proposed fusion method, each source image is first decomposed with NSCT to obtain one low-pass sub-image and a number of high-pass sub-images. Second, an SR-based scheme is put forward to fuse the low-pass sub-images of multiple source images. In the SR-based scheme, a joint dictionary is constructed by integrating many informative and compact sub-dictionaries, in which each sub-dictionary is learned by extracting a few principal component analysis bases from the jointly clustered patches obtained from the low-pass subimages. Thirdly, we design a multi-scale morphology focus-measure (MSMF) to synthesize the high-pass sub-images. The MSMF is constructed based on the multi-scale morphology structuring elements and the morphology gradient operators, so that it can effectively extract the comprehensive gradient features from the sub-images. The "Max-MSMF'' is then defined as the fusion rule to fuse the high-pass sub-images. Finally, the fused image is reconstructed by performing the inverse NSCT on the merged low-pass and high-pass subimages, respectively. The proposed method is tested on a series of multi-focus images and compared with several well-known fusion methods. Experimental results and analyses indicate that the proposed method is effective and outperforms some existing state-of-the-art methods.
引用
收藏
页码:16985 / 16997
页数:13
相关论文
共 45 条
[1]   Multimodal Medical Image Sensor Fusion Framework Using Cascade of Wavelet and Contourlet Transform Domains [J].
Bhateja, Vikrant ;
Patel, Himanshi ;
Krishn, Abhinav ;
Sahu, Akanksha ;
Lay-Ekuakille, Aime .
IEEE SENSORS JOURNAL, 2015, 15 (12) :6783-6790
[2]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[3]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[4]   Image Fusion Using Quaternion Wavelet Transform and Multiple Features [J].
Chai, Pengfei ;
Luo, Xiaoqing ;
Zhang, Zhancheng .
IEEE ACCESS, 2017, 5 :6724-6734
[5]   The nonsubsampled contourlet transform: Theory, design, and applications [J].
da Cunha, Arthur L. ;
Zhou, Jianping ;
Do, Minh N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) :3089-3101
[6]   The contourlet transform: An efficient directional multiresolution image representation [J].
Do, MN ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (12) :2091-2106
[7]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[8]   Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization [J].
Dong, Weisheng ;
Zhang, Lei ;
Shi, Guangming ;
Wu, Xiaolin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (07) :1838-1857
[9]   Multifocus color image fusion based on quaternion curvelet transform [J].
Guo, Liqiang ;
Dai, Ming ;
Zhu, Ming .
OPTICS EXPRESS, 2012, 20 (17) :18846-18860
[10]   Joint patch clustering-based dictionary learning for multimodal image fusion [J].
Kim, Minjae ;
Han, David K. ;
Ko, Hanseok .
INFORMATION FUSION, 2016, 27 :198-214