Automated combination of optical coherence tomography images and fundus images

被引:6
作者
Fida, A. D. [1 ]
Gaidel, A., V [1 ,2 ]
Demin, N. S. [1 ,2 ]
Ilyasova, N. Yu [1 ,2 ]
Zamytskiy, E. A. [3 ]
机构
[1] Samara Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
[2] RAS, IPSI RAS Branch FSRC Crystallog & Photon, Molodogvardeyskaya 151, Samara 443001, Russia
[3] Samara Reg Clin Ophthalmol Hosp, Ophthalmoendocrinol Dept, Zaporozhskaya 26, Samara 443066, Russia
基金
俄罗斯基础研究基金会;
关键词
image processing; optical coherence tomography; fundus; image matching; FEATURES;
D O I
10.18287/2412-6179-CO-892
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss approaches to combining multimodal multidimensional images, namely, three-dimensional optical coherence tomography (OCT) data and two-dimensional color images of the fundus. Registration of these two modalities can help to adjust the position of the obtained OCT images on the retina. Some existing approaches to matching fundus images are based on finding key points that are considered invariant to affine transformations and are common to the two images. However, errors in the identification of such points can lead to registration errors. There are also methods for iterative adjustment of conversion parameters, but they are based on some manual settings. In this paper, we propose a method based on a full or partial search of possible combinations of the OCT image transformation to find the best approximation of the true transformation. The best approximation is determined using a measure of comparison of preprocessed image pixels. Further, the obtained transformations are compared with the available true transformations to assess the quality of the algorithm. The structure of the work includes: pre-processing of OCT and fundus images with the extraction of blood vessels, random search or grid search over possible transformation parameters (shift, rotation and scaling), and evaluation of the quality of the algorithm.
引用
收藏
页码:721 / +
页数:9
相关论文
共 19 条
  • [1] Amirov A. N., 2015, Kazanskii Meditsinskii Zhurnal, V96, P70, DOI 10.17750/KMJ2015-070
  • [2] A Comparison of Respiratory Outcomes after Treating Retinopathy of Prematurity with Laser Photocoagulation or Intravitreal Bevacizumab
    Barry, Gerard P.
    Tauber, Kate A.
    Greenberg, Scott
    Lajoie, Juliann
    Afroze, Farzana
    Oechsner, Helena
    Finucane, Elizabeth
    Binenbaum, Gil
    [J]. OPHTHALMOLOGY RETINA, 2020, 4 (12): : 1202 - 1208
  • [3] The equivalence of two definitions of compatible homography matrices
    Chojnacki, Wojciech
    Szpak, Zygmunt L.
    Wadenback, Marten
    [J]. PATTERN RECOGNITION LETTERS, 2020, 135 : 38 - 43
  • [4] The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study)
    Dedov, I. I.
    Shestakova, M. V.
    Galstyan, G. R.
    [J]. DIABETES MELLITUS, 2016, 19 (02): : 104 - 112
  • [5] Ghassabi Z., 2013, Eurasip Journal on Image and Video Processing, V2013, P1
  • [6] Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model
    Golabbakhsh, Marzieh
    Rabbani, Hossein
    [J]. IET IMAGE PROCESSING, 2013, 7 (08) : 768 - 776
  • [7] Therapeutic revolution in the management of diabetic retinopathy
    Hurley, Bernard
    [J]. CANADIAN JOURNAL OF OPHTHALMOLOGY-JOURNAL CANADIEN D OPHTALMOLOGIE, 2017, 52 : S1 - S2
  • [8] Technology of intellectual feature selection for a system of automatic formation of a coagulate plan on retina
    Ilyasova, N. Yu.
    Shirokanev, A. S.
    Kupriyanov, A. V.
    Paringer, R. A.
    [J]. COMPUTER OPTICS, 2019, 43 (02) : 304 - 315
  • [9] Ilyasova N. Yu, 2018, Journal of Physics: Conference Series, V1096, DOI 10.1088/1742-6596/1096/1/012095
  • [10] Regions of Interest in a Fundus Image Selection Technique Using the Discriminative Analysis Methods
    Ilyasova, Nataly
    Paringer, Rustam
    Kupriyanov, Alexander
    [J]. COMPUTER VISION AND GRAPHICS, ICCVG 2016, 2016, 9972 : 408 - 417