Object category recognition using generative template boosting

被引:0
作者
Peng, Shaowu [1 ,3 ]
Lin, Liang [2 ,3 ]
Porway, Jake [4 ]
Sang, Nong [1 ,3 ]
Zhu, Song-Chun [3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, IPRAI, Wuhan 430074, Peoples R China
[2] Beijing Inst Technol, Sch Informat Sci & Technol, Beijing 100081, Peoples R China
[3] Lotus Hill Inst Comp Vis & Info Sci, Ezhou 436000, Peoples R China
[4] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
来源
ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 2007年 / 4679卷
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a framework for object categorization via sketch graphs, structures that incorporate shape and structure information. In this framework, we integrate the learnable And-Or graph model, a hierarchical structure that combines the reconfigurability of a stochastic context free grammar(SCFG) with the constraints of a Markov random field(MRF); and we sample object configurations as training templates from this generative model. Based on these synthesized templates; four steps of discriminative approaches are adopted for cascaded pruning, while a template matching method is developed for top-down verification. These synthesized templates are sampled from the whole configuration space following the maximum entropy constraints. In contrast to manually choosing data; they have a great ability to represent the variability of each object category. The generalizability and flexibility of our framework is illustrated on 20 categories of sketch-based objects under different scales.
引用
收藏
页码:198 / +
页数:3
相关论文
共 24 条
[1]  
[Anonymous], 2005, CVPR
[2]  
[Anonymous], ECCV
[3]  
[Anonymous], 2003, CVPR
[4]  
[Anonymous], ICCV
[5]  
[Anonymous], 2001, P 2001 IEEE COMP SOC
[6]  
[Anonymous], CVPR
[7]   Shape matching and object recognition using shape contexts [J].
Belongie, S ;
Malik, J ;
Puzicha, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (04) :509-522
[8]  
CHEN H., 2006, CVPR, V1, P943, DOI DOI 10.1109/CVPR.2006.81
[9]  
CHI Z, 1998, COMPUTATIONAL LINGUI, V24
[10]  
CSURKA G, 2004, SLCV WORKSH CONJ ECC