Feature Learning by Attention and Ensemble with 3D U-Net to Glioma Tumor Segmentation

被引:1
|
作者
Cai, Xiaohong [1 ]
Lou, Shubin [2 ]
Shuai, Mingrui [2 ]
An, Zhulin [3 ]
机构
[1] Xiamen Inst Data Intelligence, Xiamen, Peoples R China
[2] Anhui Univ, Sch Compute Sci & Technol, Hefei, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II | 2022年 / 12963卷
关键词
Glioma; Brain tumor; Machine learning; Deep learning; Transfer learning; Medical image segmentation;
D O I
10.1007/978-3-031-09002-8_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
BraTS2021 Task1 is research on segmentation of intrinsically heterogeneous brain glioblastoma sub-regions in mpMRI scans. Base on BraTS 2020 top ten team's solution (open brats2020, ranked among the top ten teams work), we proposed a similar as 3D U-Net neural network, called as TE U-Net, to differentiate glioma sub-regions class. According that automatically learns to focus on sub-regions class structures of varying shapes and sizes, we proposed TE U-Net which is similar with U-Net++ network architecture. Firstly, we reserved encoder second and third stage's skip connect design, then also cut off first stage skip connect design. Secondly, multiple stage features through attention gate block before features skip connect, so as to ensemble channels and space region information to suppress irrelevant regions. Finally, in order to improve model performance, on network post-processing stage, we ensemble multiple similar 3D U-Net with attention module. On the online validation database, the TE U-Net architecture get best result is that the GD-enhancing tumor (ET) dice is 83.79%, the peri-tumoral edematous/invaded tissue (TC) dice is 86.47%, and the necrotic tumor core (WT) dice is 91.98%, Hausdorff (95%) values is 6.39,7.81,3.86 and Sensitivity values is 82.20%, 83.99%, 91.92% respectively. And our solution achieved a dice of 85.62%,86.70%,90.64% for ET,TC and WT, as well as Hausdorff(95%) is 18.70,21.06,10.88 on final private test dataset.
引用
收藏
页码:68 / 79
页数:12
相关论文
共 50 条
  • [21] A Novel Approach for Fully Automatic Intra-Tumor Segmentation With 3D U-Net Architecture for Gliomas
    Baid, Ujjwal
    Talbar, Sanjay
    Rane, Swapnil
    Gupta, Sudeep
    Thakur, Meenakshi H.
    Moiyadi, Aliasgar
    Sable, Nilesh
    Akolkar, Mayuresh
    Mahajan, Abhishek
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [22] 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network
    Gonzalez, S. Rosas
    Sekou, T. Birgui
    Hidane, M.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 113 - 123
  • [23] An efficient brain tumor segmentation model based on group normalization and 3D U-Net
    Chen, Runlin
    Lin, Yangping
    Ren, Yanming
    Deng, Hao
    Cui, Wenyao
    Liu, Wenjie
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [24] LKAU-Net: 3D Large-Kernel Attention-Based U-Net for Automatic MRI Brain Tumor Segmentation
    Li, Hao
    Nan, Yang
    Yang, Guang
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 313 - 327
  • [25] FAU-Net: An Attention U-Net Extension with Feature Pyramid Attention for Prostate Cancer Segmentation
    Quihui-Rubio, Pablo Cesar
    Flores-Araiza, Daniel
    Gonzalez-Mendoza, Miguel
    Mata, Christian
    Ochoa-Ruiz, Gilberto
    ADVANCES IN SOFT COMPUTING, MICAI 2023, PT II, 2024, 14392 : 165 - 176
  • [26] Segmentation of Liver Anatomy by Combining 3D U-Net Approaches
    Affane, Abir
    Kucharski, Adrian
    Chapuis, Paul
    Freydier, Samuel
    Lebre, Marie-Ange
    Vacavant, Antoine
    Fabijanska, Anna
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [27] A Bispectral 3D U-Net for Rotation Robustness in Medical Segmentation
    Chevalley, Arthur
    Oreiller, Valentin
    Fageot, Julien
    Prior, John O.
    Andrearczyk, Vincent
    Depeursinge, Adrien
    TOPOLOGY-AND GRAPH-INFORMED IMAGING INFORMATICS, TGI3 2024, 2025, 15239 : 43 - 54
  • [28] Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D U-Net
    Wang, Chuanbo
    Guo, Ye
    Chen, Wei
    Yu, Zeyun
    2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2019, : 730 - 739
  • [29] Dual attention U-net for liver tumor segmentation in CT images
    Alirr, Omar Ibrahim
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (02)
  • [30] Improving lung nodule segmentation in thoracic CT scans through the ensemble of 3D U-Net models
    Rikhari, Himanshu
    Baidya Kayal, Esha
    Ganguly, Shuvadeep
    Sasi, Archana
    Sharma, Swetambri
    Antony, Ajith
    Rangarajan, Krithika
    Bakhshi, Sameer
    Kandasamy, Devasenathipathy
    Mehndiratta, Amit
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024, 19 (10) : 2089 - 2099