Feature Learning by Attention and Ensemble with 3D U-Net to Glioma Tumor Segmentation

被引:1
|
作者
Cai, Xiaohong [1 ]
Lou, Shubin [2 ]
Shuai, Mingrui [2 ]
An, Zhulin [3 ]
机构
[1] Xiamen Inst Data Intelligence, Xiamen, Peoples R China
[2] Anhui Univ, Sch Compute Sci & Technol, Hefei, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
关键词
Glioma; Brain tumor; Machine learning; Deep learning; Transfer learning; Medical image segmentation;
D O I
10.1007/978-3-031-09002-8_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
BraTS2021 Task1 is research on segmentation of intrinsically heterogeneous brain glioblastoma sub-regions in mpMRI scans. Base on BraTS 2020 top ten team's solution (open brats2020, ranked among the top ten teams work), we proposed a similar as 3D U-Net neural network, called as TE U-Net, to differentiate glioma sub-regions class. According that automatically learns to focus on sub-regions class structures of varying shapes and sizes, we proposed TE U-Net which is similar with U-Net++ network architecture. Firstly, we reserved encoder second and third stage's skip connect design, then also cut off first stage skip connect design. Secondly, multiple stage features through attention gate block before features skip connect, so as to ensemble channels and space region information to suppress irrelevant regions. Finally, in order to improve model performance, on network post-processing stage, we ensemble multiple similar 3D U-Net with attention module. On the online validation database, the TE U-Net architecture get best result is that the GD-enhancing tumor (ET) dice is 83.79%, the peri-tumoral edematous/invaded tissue (TC) dice is 86.47%, and the necrotic tumor core (WT) dice is 91.98%, Hausdorff (95%) values is 6.39,7.81,3.86 and Sensitivity values is 82.20%, 83.99%, 91.92% respectively. And our solution achieved a dice of 85.62%,86.70%,90.64% for ET,TC and WT, as well as Hausdorff(95%) is 18.70,21.06,10.88 on final private test dataset.
引用
收藏
页码:68 / 79
页数:12
相关论文
共 50 条
  • [1] SEGMENTATION OF SPINAL SUBARACHNOID LUMEN WITH 3D ATTENTION U-NET
    Keles, Ayse
    Algin, Oktay
    Ozisik, Pinar Akdemir
    Sen, Baha
    Celebi, Fatih Vehbi
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2023, 23 (04)
  • [2] Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images
    Nodirov, Jakhongir
    Abdusalomov, Akmalbek Bobomirzaevich
    Whangbo, Taeg Keun
    SENSORS, 2022, 22 (17)
  • [3] SCAU-net: 3D self-calibrated attention U-Net for brain tumor segmentation
    Liu, Dongwei
    Sheng, Ning
    Han, Yutong
    Hou, Yaqing
    Liu, Bin
    Zhang, Jianxin
    Zhang, Qiang
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (33): : 23973 - 23985
  • [5] SCAU-net: 3D self-calibrated attention U-Net for brain tumor segmentation
    Dongwei Liu
    Ning Sheng
    Yutong Han
    Yaqing Hou
    Bin Liu
    Jianxin Zhang
    Qiang Zhang
    Neural Computing and Applications, 2023, 35 : 23973 - 23985
  • [6] A Hierarchical 3D U-Net for Brain Tumor Substructure Segmentation
    Yang, J.
    Wang, R.
    Weng, Y.
    Chen, L.
    Zhou, Z.
    MEDICAL PHYSICS, 2020, 47 (06) : E568 - E568
  • [7] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [8] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [9] Advances in Brain Tumor Segmentation and Skull Stripping: A 3D Residual Attention U-Net Approach
    Dawood, Tamara A.
    Hashim, Ashwaq T.
    Nasser, Ahmed R.
    TRAITEMENT DU SIGNAL, 2023, 40 (05) : 1895 - 1908
  • [10] MRI Brain Tumor Segmentation Using a 2D-3D U-Net Ensemble
    Marti Asenjo, Jaime
    Martinez-Larraz Solis, Alfonso
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 354 - 366