ALGEBRAIC ISOMONODROMIC DEFORMATIONS AND THE MAPPING CLASS GROUP

被引:3
作者
Cousin, Gael [1 ]
Heu, Viktoria [2 ]
机构
[1] Univ Fed Fluminense, GMA IME, Campus Gragoata, Niteroi, RJ, Brazil
[2] IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
关键词
isomonodromic deformations; mapping class group; BRAID GROUP ORBITS; VARIETIES; CONNECTIONS; CURVES;
D O I
10.1017/S1474748019000562
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The germ of the universal isomonodromic deformation of a logarithmic connection on a stable n-pointed genus g curve always exists in the analytic category. The first part of this article investigates under which conditions it is the analytic germification of an algebraic isomonodromic deformation. Up to some minor technical conditions, this turns out to be the case if and only if the monodromy of the connection has finite orbit under the action of the mapping class group. The second part of this work studies the dynamics of this action in the particular case of reducible rank 2 representations and genus g > 0, allowing to classify all finite orbits. Both of these results extend recent ones concerning the genus 0 case.
引用
收藏
页码:1497 / 1545
页数:49
相关论文
共 50 条
  • [21] Higher-rank isomonodromic deformations and W-algebras
    Pavlo Gavrylenko
    Nikolai Iorgov
    Oleg Lisovyy
    Letters in Mathematical Physics, 2020, 110 : 327 - 364
  • [22] Isomonodromic deformations of logarithmic connections and stable parabolic vector bundles
    Biswas, Indranil
    Heu, Viktoria
    Hurtubise, Jacques
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (02) : 191 - 227
  • [23] Stability of rank 2 vector bundles along isomonodromic deformations
    Heu, Viktoria
    MATHEMATISCHE ANNALEN, 2009, 344 (02) : 463 - 490
  • [24] Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections
    KOMYO, A. R. A. T. A.
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2022, 74 (02) : 473 - 519
  • [25] A complex of incompressible surfaces for handlebodies and the mapping class group
    Charitos, Charalampos
    Papadoperakis, Ioannis
    Tsapogas, Georgios
    MONATSHEFTE FUR MATHEMATIK, 2012, 167 (3-4): : 405 - 415
  • [26] Algebraic K-theory of mapping class groups
    Berkove, E
    Juan-Pineda, D
    Lu, Q
    K-THEORY, 2004, 32 (01): : 83 - 100
  • [27] An acylindricity theorem for the mapping class group
    Shackleton, Kenneth J.
    NEW YORK JOURNAL OF MATHEMATICS, 2010, 16 : 563 - 573
  • [28] A New Boundary of the Mapping Class Group
    Li Xin Liu
    Yao Zhong Shi
    Acta Mathematica Sinica, English Series, 2023, 39 : 885 - 903
  • [29] Bordism invariants of the mapping class group
    Heap, Aaron
    TOPOLOGY, 2006, 45 (05) : 851 - 886
  • [30] Artin relations in the mapping class group
    Mortada, Jamil
    GEOMETRIAE DEDICATA, 2012, 158 (01) : 283 - 300