Double-Layer Honeycomb AIP: A Promising Anode Material for Li-, Na-, and K-Ion Batteries

被引:15
|
作者
Yi, Shuaiyu [2 ]
Liu, Guangdong [2 ]
Liu, Zhixiao [1 ]
Hu, Wangyu [1 ]
Deng, Huiqiu [2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CAPACITY ELECTRODE MATERIAL; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; HEXAGONAL BORON-NITRIDE; THEORETICAL PREDICTION; DOPED GRAPHENE; TI3C2; MXENE; LITHIUM; SODIUM; MONOLAYER;
D O I
10.1021/acs.jpcc.9b09172
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of alkali metal-ion batteries requires anode materials with high capacity and fast kinetics. The present study theoretically investigates the double-layer honeycomb (DLHC) AlP as a potential anode material for alkali metalion batteries. It is found that the threefold hollow site is energetically favored for storing alkali metal atoms. DLHC AlP exhibits metallic properties after alkali metal adsorption. The calculated diffusion barriers for Li, Na, and K atoms on DLHC AlP are 0.38, 0.26, and 0.15 eV, respectively, which are comparable to those of other common two-dimensional materials. As an anode material, DLHC AlP has excellent multilayered adsorption ability for Li, Na, and K atoms. Therefore, it can deliver high specific capacities of 924, 1386, and 693 mA h g(-1), corresponding to Li2AlP, Na3AlP, and K1.5AlP. In addition, the highest plateaus of open circuit voltages are 0.56 V vs Li+/Li, 0.45 V vs Na+/Na, and 0.71 V vs K+/K, which are beneficial for achieving the high discharge voltage in full cells. The current work is expected to provide new knowledge for developing novel nanostructured materials for improving the performance of energy storage devices.
引用
收藏
页码:2978 / 2986
页数:9
相关论文
共 50 条
  • [41] Hexagonal Boron Nitride/Blue Phosphorene Heterostructure as a Promising Anode Material for Li/Na-Ion Batteries
    Bao, Jinna
    Zhu, Linsheng
    Wang, Haochi
    Han, Shufeng
    Jin, Yuhang
    Zhao, Guoqiang
    Zhu, Yiheng
    Guo, Xin
    Hou, Jianhua
    Yin, Hong
    Tian, Jian
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41) : 23329 - 23335
  • [42] Metallic B2Si monolayer as a flexible anode material for Li, Na and K-ion batteries: A first principles study
    Du, Junliang
    Lin, He
    Huang, Yong
    PHYSICA B-CONDENSED MATTER, 2024, 675
  • [43] Two-dimensional Zr2C monolayer as anode material for Li, Na and K ion batteries
    Wang, Yusheng
    Wang, Sen
    Zhang, Yongqi
    Song, Nahong
    Luo, Shijun
    Xu, Bin
    Wang, Fei
    CHEMICAL PHYSICS, 2025, 589
  • [44] Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries
    Yamamoto, Hijiri
    Muratsubaki, Shotaro
    Kubota, Kei
    Fukunishi, Mika
    Watanabe, Hiromu
    Kim, Jungmin
    Komaba, Shinichi
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (35) : 16844 - 16848
  • [45] O- and S-Terminated M2C MXenes as Anode Materials for Na/K-Ion Batteries
    Chen, Zhenhua
    Liu, Zhiqiang
    Yuan, Xian
    Zhou, Naigen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (09) : 4267 - 4275
  • [46] 2D honeycomb borophene oxide: a promising anode material offering super high capacity for Li/Na-ion batteries
    Hu, Junping
    Zhong, Chengyong
    Wu, Weikang
    Liu, Ning
    Liu, Yu
    Yang, Shengyuan A.
    Ouyang, Chuying
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (06)
  • [47] First principles study of a triazine-based covalent organic framework as a high-capacity anode material for Na/K-ion batteries
    Liu, Sitong
    Liu, Bo
    Yu, Meidong
    Gao, Hanyu
    Guo, Haipeng
    Jiang, Daguo
    Yang, Shenbo
    Wen, Yufeng
    Wu, Yabei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (02) : 1376 - 1384
  • [48] Functionalized Two-Dimensional Nanoporous Graphene as Efficient Global Anode Materials for Li-, Na-, K-, Mg-, and Ca-Ion Batteries
    Hussain, Tanveer
    Olsson, Emilia
    Alhameedi, Khidhir
    Cai, Qiong
    Karton, Amir
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (18) : 9734 - 9745
  • [49] Graphene-like BSi as a promising anode material for Li- and Mg-ion batteries: A first principle study
    Xiao, Chu
    Tang, Xianqiong
    Peng, Jinfeng
    Ding, Yanhuai
    APPLIED SURFACE SCIENCE, 2021, 563
  • [50] Two-dimensional C3N/blue phosphorene vdW heterostructure for Li, Na and K-ion batteries
    Ubaid, Mohammad
    Aziz, Anver
    Pujari, Bhalchandra S.
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (28) : 12647 - 12654