Double-Layer Honeycomb AIP: A Promising Anode Material for Li-, Na-, and K-Ion Batteries

被引:15
|
作者
Yi, Shuaiyu [2 ]
Liu, Guangdong [2 ]
Liu, Zhixiao [1 ]
Hu, Wangyu [1 ]
Deng, Huiqiu [2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CAPACITY ELECTRODE MATERIAL; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; HEXAGONAL BORON-NITRIDE; THEORETICAL PREDICTION; DOPED GRAPHENE; TI3C2; MXENE; LITHIUM; SODIUM; MONOLAYER;
D O I
10.1021/acs.jpcc.9b09172
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of alkali metal-ion batteries requires anode materials with high capacity and fast kinetics. The present study theoretically investigates the double-layer honeycomb (DLHC) AlP as a potential anode material for alkali metalion batteries. It is found that the threefold hollow site is energetically favored for storing alkali metal atoms. DLHC AlP exhibits metallic properties after alkali metal adsorption. The calculated diffusion barriers for Li, Na, and K atoms on DLHC AlP are 0.38, 0.26, and 0.15 eV, respectively, which are comparable to those of other common two-dimensional materials. As an anode material, DLHC AlP has excellent multilayered adsorption ability for Li, Na, and K atoms. Therefore, it can deliver high specific capacities of 924, 1386, and 693 mA h g(-1), corresponding to Li2AlP, Na3AlP, and K1.5AlP. In addition, the highest plateaus of open circuit voltages are 0.56 V vs Li+/Li, 0.45 V vs Na+/Na, and 0.71 V vs K+/K, which are beneficial for achieving the high discharge voltage in full cells. The current work is expected to provide new knowledge for developing novel nanostructured materials for improving the performance of energy storage devices.
引用
收藏
页码:2978 / 2986
页数:9
相关论文
共 50 条
  • [21] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
    Liu, Man
    Cheng, Zishuang
    Zhang, Xiaoming
    Li, Yefeng
    Jin, Lei
    Liu, Cong
    Dai, Xuefang
    Liu, Ying
    Wang, Xiaotian
    Liu, Guodong
    CHINESE PHYSICS B, 2023, 32 (09)
  • [22] Single- and multi-layer arsenene as an anode material for Li, Na, and K-ion battery applications
    Kanli, Muammer
    Kurban, Mustafa
    Ozdemir, Burak
    Onen, Abdullatif
    Durgun, Engin
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 186 (186)
  • [23] Two-dimensional Be2P4 as a promising thermoelectric material and anode for Na/K-ion batteries
    Verma, Nidhi
    Chauhan, Poonam
    Kumar, Ashok
    NANOSCALE, 2024, 16 (30) : 14418 - 14432
  • [24] Metallic three-dimensional porous siligraphene as a superior anode material for Li/Na/K-ion batteries
    Zhang, Yinan
    Zhao, Yafei
    Bai, Guansuo
    Wang, Hangwei
    Jin, Rencheng
    Huang, Yong
    Lin, He
    Hu, Yingdan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 652
  • [25] Boron-doped g-CN monolayer as a promising anode for Na/K-ion batteries
    Xia, Xiaoying
    Yin, Huimin
    Zhang, Yongfan
    Huang, Shuping
    SURFACES AND INTERFACES, 2023, 36
  • [26] Double-layer honeycomb AlP as a promising catalyst for Li-O2 and Na-O2 batteries
    Yi, Shuaiyu
    Liu, Guangdong
    Wan, Hui
    Liu, Zhixiao
    Hu, Wangyu
    Deng, Huiqiu
    APPLIED SURFACE SCIENCE, 2021, 550
  • [27] Theoretical study of SnS2 encapsulated in graphene as a promising anode material for K-ion batteries
    Kang, Xuxin
    Xu, Wei
    Duan, Xiangmei
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (09)
  • [28] Prediction of Two-dimensional B9 as High-performance Anode Material for Li/Na/K-ion Batteries
    Song, Yi
    Di, Yaxin
    Wang, Shiyao
    Khazaei, Mohammad
    Wang, Junjie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (48) : 23129 - 23137
  • [29] Graphene-like AlP3 monolayer: A high-performance anode material for Li/Na/K-ion batteries
    Wan, Meiqian
    Zhang, Zhongyong
    Peng, Yuntong
    Zhao, Shangquan
    Zhou, Naigen
    JOURNAL OF SOLID STATE CHEMISTRY, 2023, 327
  • [30] Monolayer C5N: A Promising Building Block for the Anode of K-Ion Batteries
    Jin, Junjie
    Deokar, Geetanjali
    Costa, Pedro M. F. J.
    Schwingenschlogl, Udo
    PHYSICAL REVIEW APPLIED, 2022, 17 (03)