Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9

被引:33
|
作者
Ashok, Bhaargavi [1 ]
Peppas, Nicholas A. [1 ,2 ,3 ,4 ,5 ]
Wechsler, Marissa E. [6 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Biomat Drug Delivery & Regenerat Med, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[4] Univ Texas Austin, Coll Pharm, Div Mol Pharmaceut & Drug Delivery, Austin, TX 78712 USA
[5] Univ Texas Austin, Dell Med Sch, Dept Surg & Perioperat Care, Austin, TX 78712 USA
[6] Univ Texas San Antonio, Dept Biomed Engn & Chem Engn, San Antonio, TX 78249 USA
基金
美国国家卫生研究院;
关键词
Hydrogels; Nanoparticles; CRISPR; Genome editing; IN-VIVO; TARGETED DELIVERY; MESSENGER-RNA; T-CELLS; GENE; CARRIERS; CANCER; VITRO; DNA; CRISPR-CAS9;
D O I
10.1016/j.jddst.2021.102728
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The discovery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) genome editing systems and their applications in human health and medicine has heralded a new era of biotechnology. However, the delivery of CRISPR therapeutics is arguably the most difficult barrier to overcome for translation to in vivo clinical administration. Appropriate delivery methods are required to efficiently and selectively transport all gene editing components to specific target cells and tissues of interest, while minimizing off-target effects. To overcome this challenge, we discuss and critique nanoparticle delivery strategies, focusing on the use of lipid-based and polymeric-based matrices herein.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Lipid- and Polymer-Based Nanostructures for Cancer Theranostics
    Luk, Brian T.
    Fang, Ronnie H.
    Zhang, Liangfang
    THERANOSTICS, 2012, 2 (12): : 1117 - 1126
  • [32] Development of a nanoparticle formulation for delivery of a CRISPR/Cas9 gene therapy for cystic fibrosis
    Walker, A.
    Guerrini, I.
    Avgerinou, A.
    Hart, S.
    HUMAN GENE THERAPY, 2018, 29 (12) : A112 - A112
  • [33] CRISPR/Cas9
    杨丽
    中南医学科学杂志, 2016, 44 (05) : 585 - 585
  • [34] CRISPR/Cas9
    Mizuno, Naoaki
    Mizutani, Eiji
    Sato, Hideyuki
    Kasai, Mariko
    Nakauchi, Hiromitsu
    Yamaguchi, Tomoyuki
    BIO-PROTOCOL, 2019, 9 (13):
  • [35] Editorial: Current approaches to CRISPR/Cas9 delivery
    Uludag, Hasan
    Aliabadi, Hamidreza Montazeri
    Gasiunas, Giedrius
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [36] Recent Advances in CRISPR/Cas9 Delivery Strategies
    Yip, Bon Ham
    BIOMOLECULES, 2020, 10 (06)
  • [37] Delivery of CRISPR/Cas9 for therapeutic genome editing
    Xu, Xiaojie
    Wan, Tao
    Xin, Huhu
    Li, Da
    Pan, Hongming
    Wu, Jun
    Ping, Yuan
    JOURNAL OF GENE MEDICINE, 2019, 21 (07):
  • [38] Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing
    Zhang, Zhen
    Wan, Tao
    Chen, Yuxuan
    Chen, Yu
    Sun, Hongwei
    Cao, Tianqi
    Zhou Songyang
    Tang, Guping
    Wu, Chuanbin
    Ping, Yuan
    Xu, Fu-Jian
    Huang, Junjiu
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (05)
  • [39] Nanoparticle delivery of CRISPR/Cas9 for treatment of cystic fibrosis by homology independent targeted integration
    Walker, A.
    Guerrini, I.
    Woodall, M.
    Hart, S.
    HUMAN GENE THERAPY, 2019, 30 (11) : A188 - A188
  • [40] Natural Biopolymer-Based Delivery of CRISPR/Cas9 for Cancer Treatment
    Lin, Meng
    Wang, Xueyan
    PHARMACEUTICS, 2024, 16 (01)