Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9

被引:33
|
作者
Ashok, Bhaargavi [1 ]
Peppas, Nicholas A. [1 ,2 ,3 ,4 ,5 ]
Wechsler, Marissa E. [6 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Biomat Drug Delivery & Regenerat Med, Austin, TX 78712 USA
[3] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
[4] Univ Texas Austin, Coll Pharm, Div Mol Pharmaceut & Drug Delivery, Austin, TX 78712 USA
[5] Univ Texas Austin, Dell Med Sch, Dept Surg & Perioperat Care, Austin, TX 78712 USA
[6] Univ Texas San Antonio, Dept Biomed Engn & Chem Engn, San Antonio, TX 78249 USA
基金
美国国家卫生研究院;
关键词
Hydrogels; Nanoparticles; CRISPR; Genome editing; IN-VIVO; TARGETED DELIVERY; MESSENGER-RNA; T-CELLS; GENE; CARRIERS; CANCER; VITRO; DNA; CRISPR-CAS9;
D O I
10.1016/j.jddst.2021.102728
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The discovery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) genome editing systems and their applications in human health and medicine has heralded a new era of biotechnology. However, the delivery of CRISPR therapeutics is arguably the most difficult barrier to overcome for translation to in vivo clinical administration. Appropriate delivery methods are required to efficiently and selectively transport all gene editing components to specific target cells and tissues of interest, while minimizing off-target effects. To overcome this challenge, we discuss and critique nanoparticle delivery strategies, focusing on the use of lipid-based and polymeric-based matrices herein.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment
    Li, Mengmeng
    Chen, Fenglei
    Yang, Qian
    Tang, Qinglai
    Xiao, Zian
    Tong, Xinying
    Zhang, Ying
    Lei, Lanjie
    Li, Shisheng
    BIOMATERIALS RESEARCH, 2024, 28
  • [22] Lipid and Polymer-Based Nanoparticle siRNA Delivery Systems for Cancer Therapy
    Mainini, Francesco
    Eccles, Michael R.
    MOLECULES, 2020, 25 (11):
  • [23] CRISPR/Cas9 systems: Delivery technologies and biomedical applications
    Yimin Dua
    Yanfei Liu
    Jiaxin Hu
    Xingxing Peng
    Zhenbao Liu
    Asian Journal of Pharmaceutical Sciences, 2023, 18 (06) : 3 - 33
  • [24] CRISPR/Cas9 systems: Delivery technologies and biomedical applications
    Du, Yimin
    Liu, Yanfei
    Hu, Jiaxin
    Peng, Xingxing
    Liu, Zhenbao
    ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2023, 18 (06)
  • [25] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [26] Robust in vivo gene editing in mouse hepatocytes with systemic lipid nanoparticle delivery of CRISPR/Cas9 components
    Finn, J. D.
    Patel, M.
    Smith, A. Rhoden
    Shaw, L.
    Youniss, M.
    Ciullo, C.
    van Heteren, J.
    Lescarbeau, R.
    Seitzer, J.
    Growe, J.
    Dombrowski, C.
    Strapps, W. R.
    Barnes, T. M.
    Morrissey, D. V.
    HUMAN GENE THERAPY, 2016, 27 (11) : A131 - A131
  • [27] Cellular delivery of CRISPR/Cas9 ribonucleoproteins via biomimic lipid nanoparticles
    Walther, J.
    Evers, M. J. W.
    de Jong, O. G.
    Vader, P.
    Mastrobattista, E.
    HUMAN GENE THERAPY, 2018, 29 (12) : A115 - A115
  • [28] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    R. N. Amirkhanov
    G. A. Stepanov
    Russian Journal of Bioorganic Chemistry, 2019, 45 : 431 - 437
  • [29] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    Amirkhanov, R. N.
    Stepanov, G. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2019, 45 (06) : 431 - 437
  • [30] Improving the efficiency of Cas9/CRISPR genome engineering by optimizing Cas9 delivery
    Pelczar, Pawel
    Oller, Heide
    Kornete, Mara
    Schreiner, Dietmar
    Hermann, Mario
    Jeker, Lukas
    TRANSGENIC RESEARCH, 2016, 25 (02) : 255 - 256