Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data

被引:19
|
作者
Baladandayuthapani, Veerabhadran [1 ]
Ji, Yuan [2 ]
Talluri, Rajesh [3 ]
Nieto-Barajas, Luis E. [4 ]
Morris, Jeffrey S. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[3] Texas A&M Univ, Dept Stat, College Stn, TX 77840 USA
[4] ITAM, Dept Stat, Mexico City 01000, DF, Mexico
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Bayesian methods; Comparative genomic hybridization; Copy number; Functional data analysis; Mixed models; Mixture models; COMPARATIVE GENOMIC HYBRIDIZATION; HIGH-RESOLUTION ANALYSIS; MICROARRAY ANALYSIS; MASS-SPECTROMETRY; GENE-EXPRESSION; REGRESSION; FRAMEWORK; CELL;
D O I
10.1198/jasa.2010.ap09250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Array-based comparative genomic hybridization (aCGH) is a high-resolution, high-throughput technique for studying the genetic basis of cancer. The resulting data consist of log fluorescence ratios as a function of the genomic DNA location and provide a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimating the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number aberrations. We propose a hierarchical Bayesian random segmentation approach for modeling aCGH data that uses information across arrays from a common population to yield segments of shared copy number changes. These changes characterize the underlying population and allow us to compare different population aCGH profiles to assess which regions of the genome have differential alterations. Our method, which we term Bayesian detection of shared aberrations in aCGH (BDSAScgh), is based on a unified Bayesian hierarchical model that allows us to obtain probabilities of alteration states as well as probabilities of differential alterations that correspond to local false discovery rates for both single and multiple groups. We evaluate the operating characteristics of our method via simulations and an application using a lung cancer aCGH data set. This article has supplementary material online.
引用
收藏
页码:1358 / 1375
页数:18
相关论文
共 50 条
  • [1] Estimating Shared Copy Number Aberrations for Array CGH Data: The Linear-Median Method
    Lin, Y. -X.
    Baladandayuthapani, V.
    Bonato, V.
    Do, K. -A.
    CANCER INFORMATICS, 2010, 9 : 229 - +
  • [2] Across array CGH; A strategy to discriminate copy number variations (CNVS) from copy number aberrations (CNAS)
    Eijk, Paul
    Israeli, Danielle
    Smeets, Serge
    Vosse, Sjoerd
    Tijssen, Marianne
    Mrsic, Alan
    Haan, Josien
    Buffart, Tineke
    Meijer, Gerrit
    Ylstra, Bauke
    CELLULAR ONCOLOGY, 2008, 30 (03) : 255 - 255
  • [3] Improved Statistical Analysis for Array CGH-Based DNA Copy Number Aberrations
    Jiang, Hongmei
    Zhu, Zhong-Zheng
    Yu, Yue
    Lin, Simon
    Hou, Lifang
    CANCER INFORMATICS, 2011, 10 : 249 - 258
  • [4] COPY NUMBER ABERRATIONS IN PAPILLARY THYROID CARCINOMA (PTC) DETECTED BY ARRAY-CGH
    Hess, J.
    Unger, K.
    Braselmann, H.
    Thomas, G.
    Zitzelsberger, H.
    CELLULAR ONCOLOGY, 2010, 32 (03) : 201 - 202
  • [5] Normalization of array-CGH data: influence of copy number imbalances
    Johan Staaf
    Göran Jönsson
    Markus Ringnér
    Johan Vallon-Christersson
    BMC Genomics, 8
  • [6] Normalization of array-CGH data: influence of copy number imbalances
    Staaf, Johan
    Jonsson, Goran
    Ringner, Markus
    Vallon-Christersson, Johan
    BMC GENOMICS, 2007, 8 (1)
  • [7] Modeling recurrent DNA copy number alterations in array CGH data
    Shah, Sohrab P.
    Lam, Wan L.
    Ng, Raymond T.
    Murphy, Kevin P.
    BIOINFORMATICS, 2007, 23 (13) : I450 - I458
  • [8] CNVDetector: locating copy number variations using array CGH data
    Chen, Peng-An
    Liu, Hsiao-Fei
    Chao, Kun-Mao
    BIOINFORMATICS, 2008, 24 (23) : 2773 - 2775
  • [9] Array CGH and copy number variation in schizophrenia
    Bruce, H.
    Sachs, N. A.
    Rossi, M.
    Cowell, J. K.
    Conroy, J.
    Nowak, N. J.
    McQuaid, D.
    Gaile, D. P.
    Christian, S. L.
    Ross, C. A.
    DeLisi, L. E.
    Holmes, S. E.
    Margolis, R. L.
    SCHIZOPHRENIA BULLETIN, 2007, 33 (02) : 294 - 295
  • [10] Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH
    Hashimoto, K
    Mori, N
    Tamesa, T
    Okada, T
    Kawauchi, S
    Oga, A
    Furuya, T
    Tangoku, A
    Oka, M
    Sasaki, K
    MODERN PATHOLOGY, 2004, 17 (06) : 617 - 622