Variable selection in multi-block regression

被引:53
|
作者
Biancolillo, Alessandra [1 ,2 ]
Liland, Kristian Hovde [1 ,3 ]
Mage, Ingrid [1 ]
Naes, Tormod [1 ,2 ]
Bro, Rasmus [2 ]
机构
[1] Nofima AS, Osloveien 1,POB 210, N-1431 As, Norway
[2] Univ Copenhagen, Fac Life Sci, Dept Food Sci, Qual & Technol, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
[3] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, POB 5003, N-1432 As, Norway
关键词
Variable selection; Multi-block; SO-PLS; MB-PLS; Raman; Sensory; PARTIAL LEAST-SQUARES; NEAR-INFRARED SPECTROSCOPY; MODELS; PLS;
D O I
10.1016/j.chemolab.2016.05.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The focus of the present paper is to propose and discuss different procedures for performing variable selection in a multi-block regression context. In particular, the focus is on two multi-block regression methods: Multi-Block Partial Least Squares (MB-PLS) and Sequential and Orthogonalized Partial Least Squares (SO-PLS) regression. A small simulation study for regular PLS regression was conducted in order to select the most promising methods to investigate further in the multi-block context. The combinations of three variable selection methods with MB-PLS and SO-PLS are examined in detail. These methods are Variable Importance in Projection (VIP) Selectivity Ratio (SR) and forward selection. In this paper we focus on both prediction ability and interpretation. The different approaches are tested on three types of data: one sensory data set, one spectroscopic (Raman) data set and a number of simulated multi-block data sets. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 101
页数:13
相关论文
共 50 条
  • [1] PROSAC as a selection tool for SO-PLS regression: A strategy for multi-block data fusion
    Diaz-Olivares, Jose A.
    Bendoula, Ryad
    Saeys, Wouter
    Ryckewaert, Maxime
    Adriaens, Ines
    Fu, Xinyue
    Pastell, Matti
    Roger, Jean-Michel
    Aernouts, Ben
    ANALYTICA CHIMICA ACTA, 2024, 1319
  • [2] Response oriented covariates selection (ROCS) for fast block order- and scale-independent variable selection in multi-block scenarios
    Mishra, Puneet
    Metz, Maxime
    Marini, Federico
    Biancolillo, Alessandra
    Rutledge, Douglas N.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 224
  • [3] Incorporating interactions in multi-block sequential and orthogonalised partial least squares regression
    Naes, Tormod
    Mage, Ingrid
    Segtnan, Vegard H.
    JOURNAL OF CHEMOMETRICS, 2011, 25 (11) : 601 - 609
  • [4] Multi-block data analysis for online monitoring of anaerobic co-digestion process
    Awhangbo, L.
    Bendoula, R.
    Roger, J. M.
    Beline, F.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 205
  • [5] MBA-GUI: A chemometric graphical user interface for multi-block data visualisation, regression, classification, variable selection and automated pre-processing
    Mishra, Puneet
    Roger, Jean Michel
    Rutledge, Douglas N.
    Biancolillo, Alessandra
    Marini, Federico
    Nordon, Alison
    Jouan-Rimbaud-Bouveresse, Delphine
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 205
  • [6] Combining SO-PLS and linear discriminant analysis for multi-block classification
    Biancolillo, Alessandra
    Mage, Ingrid
    Naes, Tormod
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 141 : 58 - 67
  • [7] On the use of quantile regression to deal with heterogeneity: the case of multi-block data
    Davino, Cristina
    Romano, Rosaria
    Vistocco, Domenico
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (04) : 771 - 784
  • [8] A Backward Variable Selection method for PLS regression (BVSPLS)
    Pierna, Juan Antonio Fernandez
    Abbas, Ouissam
    Baeten, Vincent
    Dardenne, Pierre
    ANALYTICA CHIMICA ACTA, 2009, 642 (1-2) : 89 - 93
  • [9] The Sequential Multi-block PLS algorithm (SMB-PLS): Comparison of performance and interpretability
    Lauzon-Gauthier, Julien
    Manolescu, Petre
    Duchesne, Carl
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 180 : 72 - 83
  • [10] Multi-block classification of chocolate and cocoa samples into sensory poles
    Biancolillo, Alessandra
    Preys, Sebastien
    Gaci, Belal
    Le-Quere, Jean-Luc
    Laboure, Helene
    Deuscher, Zoe
    Cheynier, Veronique
    Sommerer, Nicolas
    Fayeulle, Noemie
    Costet, Pierre
    Hue, Clotilde
    Boulanger, Renaud
    Alary, Karine
    Lebrun, Marc
    Lahon, Marie Christine
    Morel, Gilles
    Maraval, Isabelle
    Davrieux, Fabrice
    Roger, Jean-Michel
    FOOD CHEMISTRY, 2021, 340