On finite pseudorandom lattices of k symbols

被引:4
|
作者
Merai, Laszlo [1 ]
机构
[1] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1117 Budapest, Hungary
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 161卷 / 02期
关键词
Pseudorandomness; Binary sequence; Binary lattice; Finite field; Character; SEQUENCES;
D O I
10.1007/s00605-009-0174-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In earlier papers Mauduit and Sarkozy have introduced and studied the measures of pseudorandomness for finite binary sequences and sequences of k symbols. Later they (with further coauthors) extended the notation of binary sequences to binary lattices. In this paper measures of pseudorandom lattices of k symbols are introduced and studied for "truly random" lattices.
引用
收藏
页码:173 / 191
页数:19
相关论文
共 50 条
  • [21] Linear complexity of a class of pseudorandom sequences over a general finite field
    Qi Ye
    Pinhui Ke
    Jian Shen
    Soft Computing, 2018, 22 : 4335 - 4346
  • [22] Linear complexity of a class of pseudorandom sequences over a general finite field
    Ye, Qi
    Ke, Pinhui
    Shen, Jian
    SOFT COMPUTING, 2018, 22 (13) : 4335 - 4346
  • [23] Measures of pseudorandomness of finite binary lattices, I. The measures Qk, normality
    Gyarmati, Katalin
    Mauduit, Christian
    Sarkoezy, Andras
    ACTA ARITHMETICA, 2010, 144 (03) : 295 - 313
  • [24] On pseudorandom subsets in finite fields I: measure of pseudorandomness and support of Boolean functions
    Huaning Liu
    Xiaolin Chen
    Periodica Mathematica Hungarica, 2021, 83 : 204 - 219
  • [25] On pseudorandom subsets in finite fields I: measure of pseudorandomness and support of Boolean functions
    Liu, Huaning
    Chen, Xiaolin
    PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (02) : 204 - 219
  • [26] THE SEMIRING VARIETY GENERATED BY ANY FINITE NUMBER OF FINITE FIELDS AND DISTRIBUTIVE LATTICES
    Shao, Yong
    Ren, Miaomiao
    Crvenkovic, Sinisa
    Mitrovic, Melanija
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 45 - 51
  • [27] LATTICES ASSOCIATED WITH VECTOR SPACES OVER A FINITE FIELD
    Liu, Xuemei
    Gao, You
    ARS COMBINATORIA, 2009, 93 : 393 - 402
  • [28] THE VARIETY OF SEMIRINGS GENERATED BY DISTRIBUTIVE LATTICES AND FINITE FIELDS
    Shao, Yong
    Crvenkovic, Sinisa
    Mitrovic, Melanija
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 101 - 109
  • [29] Geometric Lattices Generated by Idempotent Matrices over Finite Fields
    Zhang, Ying
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (01): : 52 - 61
  • [30] Pseudo-Randomness of Certain Sequences of k Symbols with Length pq
    Chen, Zhi-Xiong
    Du, Xiao-Ni
    Wu, Chen-Huang
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2011, 26 (02) : 276 - 282