On distance-regular graphs with smallest eigenvalue at least -m

被引:24
|
作者
Koolen, J. H. [1 ,2 ]
Bang, S. [3 ]
机构
[1] POSTECH, Pohang Math Inst, Pohang 790784, South Korea
[2] POSTECH, Dept Math, Pohang 790784, South Korea
[3] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
Geometric distance-regular graph; Smallest eigenvalue; Geometric strongly regular graph; Partial linear space; SYSTEMS;
D O I
10.1016/j.jctb.2010.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A non-complete geometric distance-regular graph is the point graph of a partial linear space in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for a fixed integer m >= 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least -m, diameter at least three and intersection number c(2) >= 2. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:573 / 584
页数:12
相关论文
共 50 条