On distance-regular graphs with smallest eigenvalue at least -m

被引:24
|
作者
Koolen, J. H. [1 ,2 ]
Bang, S. [3 ]
机构
[1] POSTECH, Pohang Math Inst, Pohang 790784, South Korea
[2] POSTECH, Dept Math, Pohang 790784, South Korea
[3] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
Geometric distance-regular graph; Smallest eigenvalue; Geometric strongly regular graph; Partial linear space; SYSTEMS;
D O I
10.1016/j.jctb.2010.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A non-complete geometric distance-regular graph is the point graph of a partial linear space in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for a fixed integer m >= 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least -m, diameter at least three and intersection number c(2) >= 2. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:573 / 584
页数:12
相关论文
共 50 条
  • [21] Distance-regular graphs having the M-property
    Bendito, E.
    Carmona, A.
    Encinas, A. M.
    Mitjana, M.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (02): : 225 - 240
  • [22] DISTANCE-REGULAR GRAPHS AND HALVED GRAPHS
    HEMMETER, J
    EUROPEAN JOURNAL OF COMBINATORICS, 1986, 7 (02) : 119 - 129
  • [23] On automorphisms of distance-regular graphs
    Makhnev A.A.
    Journal of Mathematical Sciences, 2010, 166 (6) : 733 - 742
  • [24] DISTANCE-REGULAR GRAPHS THE DISTANCE MATRIX OF WHICH HAS ONLY ONE POSITIVE EIGENVALUE
    KOOLEN, JH
    SHPECTOROV, SV
    EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (03) : 269 - 275
  • [25] On almost distance-regular graphs
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    Garriga, E.
    Gorissen, B. L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 1094 - 1113
  • [26] Two distance-regular graphs
    Brouwer, Andries E.
    Pasechnik, Dmitrii V.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (03) : 403 - 407
  • [27] A NOTE ON DISTANCE-REGULAR GRAPHS
    FISHER, PH
    ARS COMBINATORIA, 1988, 26A : 91 - 92
  • [28] REMARKS ON DISTANCE-REGULAR GRAPHS
    YOSHIZAWA, M
    DISCRETE MATHEMATICS, 1981, 34 (01) : 93 - 94
  • [29] Two distance-regular graphs
    Andries E. Brouwer
    Dmitrii V. Pasechnik
    Journal of Algebraic Combinatorics, 2012, 36 : 403 - 407
  • [30] On subgraphs in distance-regular graphs
    Koolen, J.H.
    Journal of Algebraic Combinatorics, 1992, 1 (04):