A Local Limit Theorem for sums of independent random vectors

被引:9
作者
Dolgopyat, Dmitry [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2016年 / 21卷
基金
美国国家科学基金会;
关键词
local limit theorem; characteristic function; lattice distribution; concentration inequality;
D O I
10.1214/16-EJP4232
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a local limit theorem for sums of independent random vectors satisfying appropriate tightness assumptions. In particular, the local limit theorem holds in dimension 1 if the summands are uniformly bounded.
引用
收藏
页数:15
相关论文
共 12 条
  • [1] An elementary proof of the local central limit theorem
    Davis, B
    McDonald, D
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (03) : 693 - 701
  • [2] A BIVARIATE LOCAL LIMIT-THEOREM
    DONEY, RA
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (01) : 95 - 102
  • [3] Feller W., 1971, An Introduction to Probability Theory and Its Applications, VII
  • [4] ON A LOCAL LIMIT THEOREM FOR INTEGER RANDOM VECTORS
    Gamkrelidze, N. G.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2015, 59 (03) : 494 - U186
  • [5] Ibragimov I. A., 1971, Independent and Stationary Sequences of Random Variables
  • [6] Central limit theorems, Lee-Yang zeros, and graph-counting polynomials
    Lebowitz, J. L.
    Pittel, B.
    Ruelle, D.
    Speer, E. R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 141 : 147 - 183
  • [7] Maller R.A., 1978, Stoch. Process. Appl, V7, P101
  • [8] Petrov V.V., 1995, Oxford Studies in Probability, V4, P292
  • [9] Prokhorov YuV., 1954, DOKL AKAD NAUK SSSR, V98, P535
  • [10] Local limit theorems via Landau-Kolmogorov inequalities
    Roellin, Adrian
    Ross, Nathan
    [J]. BERNOULLI, 2015, 21 (02) : 851 - 880