This paper concerns the evolution of a closed hypersurface of dimension n(>= 2) in the Euclidean space Double-struck capital Rn+1 under a mixed volume preserving flow. The speed equals a power beta(>= 1) of homogeneous curvature functions of degree one and either convex or concave plus a mixed volume preserving term, including the case of powers of the mean curvature and of the Gauss curvature. The main result is that if the initial hypersurface satisfies a suitable pinching condition, there exists a unique, smooth solution of the flow for all times, and the evolving hypersurfaces converge exponentially to a round sphere, enclosing the same mixed volume as the initial hypersurface.
机构:
Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, ItalyUniv Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Cesaroni, Annalisa
Novaga, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
机构:
Univ Roma Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, ItalyUniv Roma Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
Bertini, Maria Chiara
Sinestrari, Carlo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Via Politecn 1, I-00133 Rome, ItalyUniv Roma Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy