A functional central limit theorem for the empirical Ripley's K-function

被引:4
作者
Biscio, Christophe A. N. [1 ]
Svane, Anne Marie [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, Skjernvej 4A, DK-9220 Aalborg, Denmark
关键词
Point processes; Gibbs point processes; Ripley's K function; functional central limit theorem; goodness-of-fit test; PERFECT SIMULATION; TESTS;
D O I
10.1214/22-EJS2017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a functional central limit theorem for the empirical Ripley's K-function of Gibbs point processes and point processes with fast decay of correlations. Our theorem greatly extend past results that were restricted to the Poisson case and allow to determine the asymptotic behaviour of statistics based on the K-function which may be used, for example, to develop goodness-of-fit tests. We illustrate this in a simulation study.
引用
收藏
页码:3060 / 3098
页数:39
相关论文
共 26 条
[1]  
[Anonymous], 1988, STAT INFERENCE SPATI, DOI [10.1017/CBO9780511624131, DOI 10.1017/CBO9780511624131]
[2]  
[Anonymous], 1963, The theory of branching processes
[3]  
[Anonymous], 2002, Probability and Its Applications, DOI DOI 10.1007/978-1-4757-4015-8
[4]  
Baddeley A, 2016, CHAP HALL CRC INTERD, P1
[5]   Testing goodness of fit for point processes via topological data analysis [J].
Biscio, Christophe A. N. ;
Chenavier, Nicolas ;
Hirsch, Christian ;
Svane, Anne Marie .
ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01) :1024-1074
[6]   LIMIT THEORY FOR GEOMETRIC STATISTICS OF POINT PROCESSES HAVING FAST DECAY OF CORRELATIONS [J].
Blaszczyszyn, B. ;
Yogeshwaran, D. ;
Yukich, J. E. .
ANNALS OF PROBABILITY, 2019, 47 (02) :835-895
[7]   A note on expansion for functionals of spatial marked point processes [J].
Blaszczyszyn, B ;
Merzbach, E ;
Schmidt, V .
STATISTICS & PROBABILITY LETTERS, 1997, 36 (03) :299-306
[8]  
Chiu S. N., 2013, Stochastic geometry and its applications
[9]  
Dereudre D., 2018, ARXIV170108105V2
[10]  
e in H., 1991, Statistics, V22, P245