Maximal arithmetic progressions in random subsets

被引:3
|
作者
Benjamini, Itai
Yadin, Ariel
Zeitouni, Ofer
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2007年 / 12卷
关键词
Arithmetic progression; Chen-Stein method; Dependency graph; Extreme type limit distribution; Random subset;
D O I
10.1214/ECP.v12-1321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U-( N) denote the maximal length of arithmetic progressions in a random uniform subset of {0,1}(N). By an application of the Chen-Stein method, we show that U-(N)-2 log N/log2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W-(N) of arithmetic prorpgressions (mod N). When considered in the natural way on a common probability space, we observe that U-(N)/logN converges almost surely to 2/log2, while W-(N)/logN does not converge almost surely (and in particular, lim sup W-(N)/log N >= 3/log 2).
引用
收藏
页码:365 / 376
页数:12
相关论文
共 50 条
  • [41] Strings of special primes in arithmetic progressions
    Keenan Monks
    Sarah Peluse
    Lynnelle Ye
    Archiv der Mathematik, 2013, 101 : 219 - 234
  • [42] An Additive Problem with Primes in Arithmetic Progressions
    Zhen Feng Zhang
    Acta Mathematica Sinica, 2005, 21 : 155 - 168
  • [43] Filtrations of Formal Languages by Arithmetic Progressions
    Mousavi, Hamoon
    Shallit, Jeffrey
    FUNDAMENTA INFORMATICAE, 2013, 123 (02) : 135 - 142
  • [44] Arithmetic Progressions Among Powerful Numbers
    Chan, Tsz Ho
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (01)
  • [45] Words avoiding repetitions in arithmetic progressions
    Kao, Jui-Yi
    Rampersad, Narad
    Shallit, Jeffrey
    Silva, Manuel
    THEORETICAL COMPUTER SCIENCE, 2008, 391 (1-2) : 126 - 137
  • [46] The distribution of quadratic residues and nonresidues in arithmetic progressions
    Justus, Benjamin
    LITHUANIAN MATHEMATICAL JOURNAL, 2014, 54 (02) : 142 - 149
  • [47] Arithmetic Progressions in the Graphs of Slightly Curved Sequences
    Saito, Kota
    Yoshida, Yuuya
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (02)
  • [48] ON POINTS CONTAIN ARITHMETIC PROGRESSIONS IN THEIR LUROTH EXPANSION
    Zhang, Zhenliang
    Cao, Chunyun
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (01) : 257 - 264
  • [49] TAME AUTOMORPHISMS WITH MULTIDEGREES IN THE FORM OF ARITHMETIC PROGRESSIONS
    Li, Jiantao
    Du, Xiankun
    MATHEMATICA SLOVACA, 2015, 65 (06) : 1261 - 1270
  • [50] An Extension of Sylvester's Theorem on Arithmetic Progressions
    Munagi, Augustine O.
    de Vega, Francisco Javier
    SYMMETRY-BASEL, 2023, 15 (06):